appendix C

QUALITY ASSURANCE/ QUALITY CONTROL

QUALITY ASSURANCE/QUALITY CONTROL

This appendix details quality assurance/quality control information for the water quality analyses, sediment geochemistry analyses, tissue chemistry analyses, invertebrate taxonomy, and otter trawl sample collection conducted for the District's 2009-10 ocean monitoring program.

INTRODUCTION

The Core monitoring program was designed to measure compliance with permit conditions and for temporal and spatial trend analysis. The program includes measurements of:

- Water quality;
- Sediment quality;
- Benthic infaunal community health;
- Fish and macroinvertebrate community health;
- Fish tissue contaminant concentrations (chemical body burden); and
- Fish health (including external parasites and diseases).

The Core monitoring program complies with the Orange County Sanitation District (OCSD) Quality Assurance/Quality Control (QA/QC) Program requirements and applicable federal, state, local, and contract requirements. The objectives of the quality assurance program are as follows:

- Scientific data generated will be of sufficient quality to stand up to scientific and legal scrutiny.
- Data will be gathered or developed in accordance with procedures appropriate for the intended use of the data.
- Data will be of known and acceptable precision, accuracy, representativeness, completeness, and comparability as required by the program.

The various aspects of the program are conducted on a schedule that varies weekly, monthly, quarterly, semi-annually, and annually. Table C-1 shows that sampling goals were achieved for >99.8 percent of the required samples, with the exception of the sanddab guild collection for fish tissue. There were no size class 0 sanddab guild fish composites made due to insufficient specimens collected during field sampling. Sampling and data analysis is characterized by quarters 1 through 4, which are representative of summer (July–September), fall (October–December), winter (January–March), and spring (April–June) seasons, respectively.

Table C-1.Ocean monitoring program sample collection requirements and percent completion,
July 2009–June 2010.

Quarter	Program Type	Parameter	Nominal # of Samples	# of Samples Collected	# of QA Duplicates (≤10%)	%Samples Collected
		CTD Drops	105	105	15	100
-	Water Quality	Ammonium	470	469	81	99.8
		Bacteria	260	260	30	100
		Grain size	69	69	7	100
		TOC	69	69	3	100
4		Dissolved Sulfides	69	69	7	100
1		Metals	69	69	7	100
	Chemistry	PCB/Pesticides	69	69	7	100
		PAH	69	69	8	100
		LAB	69	69	8	100
	Benthic Infauna	Infauna	49	49	10	100
	Benthic Infauna Fish Community Water Quality	Trawls *	23	23	NA	100
		CTD Drops	105	105	15	100
	Water Quality	Ammonium	470	470	81	100
		Bacteria	260	260	31	100
		Grain size	10	10	1	100
		TOC	10	10	1	100
2		Dissolved Sulfides	10	10	1	100
		Metals	10	10	1	100
		PCB/Pesticides	10	10	1	100
		PAH	10	10	1	100
	Benthic Infauna	Infauna	30	30	3	100
		CTD Drops	105	105	15	100
	Water Quality	Ammonium	470	470	81	100
		Bacteria	260	260	30	100
		Grain size	10	10	1	100
		TOC	10	10	0	100
	Sediment	Dissolved Sulfides	10	10	1	100
	Chemistry	Metals	10	10	1	100
3	-	PCB/Pesticides	10	10	1	100
		PAH	10	10	1	100
	Benthic Infauna	Infauna	30	30	3	100
	Fish Community	Trawls	23	23	NA	100
		Hornyhead turbot	20 x 2 *	20 x 2 *	4	100
	Fish Tissue	English sole	20 x 2 *	20 x 2 *	6	100
		Sanddab Guild	18	15	0	83.3
		CTD Drops	105	105	15	100
	Water Quality	Ammonium	470	470	81	100
	,	Bacteria	260	260	30	100
		Grain size	10	10	1	100
		TOC	10	10	0	100
4	Sediment	Dissolved Sulfides	10	10	1	100
	Chemistry	Metals	10	10	1	100
		PCB/Pesticides	10	10	1	100
			10	10	1	100
		PAH	10	10		100

Orange County Sanitation District, California.

* English sole and hornyhead turbot are analyzed for both muscle and liver tissue. NA = not applicable

WATER QUALITY NARRATIVE

Introduction

OCSD's Environmental Laboratory and Ocean Monitoring (ELOM) staff collected 551, 551, 551, and 551 discrete ammonia samples, respectively, during the 4 quarters beginning July 1, 2009 and ending June 30, 2010. All samples were iced upon collection, preserved with 1:1 sulfuric acid upon receipt by the ELOM laboratory staff, and stored at 4±2 °C until analysis according to ESL Standard Operating Procedures (SOPs), which are found in the Laboratory Operating Procedures Manual (LOPM, OCSD 2009).

Analytical Method - Ammonium

The samples were analyzed for ammonia on a segmented flow analyzer using Standard Method 4500-NH₃ G. In the analysis, sodium phenolate and sodium hypochlorite react with ammonia to form indophenol blue in a concentration proportional to the ammonium concentration in the sample. The blue color is intensified with sodium nitroprusside and is measured at 660 nm.

QA/QC - Ammonium

A typical sample batch includes 3 blanks, an external reference standard, a spike, and a spike replicate in seawater collected from a control site. One spike and spike replicate are added to the batch every 10 samples. The method detection limit (MDL) for low-level ammonia samples using the segmented flow instrument is 0.02 mg/L. QA/QC summary data are All samples were analyzed within the required holding time. presented in Table C-2. Seventy-one out of the 75 analyses met the QA/QC criteria for blanks. All analyses met the QA/QC criteria for the external reference sample. Zero of 58 matrix spike recoveries, 0 of 58 matrix spike replicate recoveries, and 3 of 58 precision measurements for the matrix spike and matrix spike replicate samples were out of control for first guarter samples. Two of 56 matrix spike recoveries, 2 of 56 matrix spike replicate recoveries, and 2 of 56 precision measurements for the matrix spike and matrix spike replicates were out of control for second quarter samples. Seven of 58 matrix spike replicate samples, 11 of 58 matrix spike replicate recoveries and 5 of 58 precision measurements for matrix spike and matrix spike replicates were out of control for third quarter samples. Zero of 57 matrix spike recoveries, 0 of 57 matrix spike replicate recoveries, and 6 of 57 precision measurements for matrix spike and matrix spike replicates were out of control for fourth guarter samples. In all cases, it was determined that recovery and precision criteria were exceeded due to rounding of numbers in the data sets in question. Additionally, the set of results following those in question were within the control limits and therefore all results are considered valid.

Table C-2. Water quality ammonium QA/QC summary, July 2009–June 2010.

Orange County Sanitation District, California.

Quarter	Sample Set	Parameter	Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD
			Blank	3	3	<2X MDL	N/A
			Matrix Spike	9	9	80-120	
Summer	NH3WQ090806-1	Ammonium	Matrix Spike Dup	9	9	80-120	
			Matrix Spike Precision	9	6		< 11%
			ERA Check Standard	1	1	87 - 114	
			Blank	3	3	<2X MDL	N/A
			Matrix Spike	10	10	80-120	
Summer	Summer NH3WQ090811-1	Ammonium	Matrix Spike Dup	10	10	80-120	
			Matrix Spike Precision	10	9, 1**		< 11%
			ERA Check Standard	1	1	87 - 114	
		Ammonium	Blank	3	3	<2X MDL	N/A
			Matrix Spike	10	10	80-120	
Summer	NH3WQ090813-1		Matrix Spike Dup	10	10	80-120	
			Matrix Spike Precision	10	10		< 11%
			ERA Check Standard	1	1	87 - 114	
			Blank	3	3	<2X MDL	N/A
			Matrix Spike	11	11	80-120	
Summer	NH3WQ090818-1	Ammonium	Matrix Spike Dup	11	11	80-120	
			Matrix Spike Precision	11	11		< 11%
			ERA Check Standard	1	1	87 - 114	
			Blank	3	3	<2X MDL	N/A
			Matrix Spike	10	10	80-120	
Summer	NH3WQ090819-1	Ammonium	Matrix Spike Dup	10	10	80-120	
			Matrix Spike Precision	10	7, 2**		< 11%
			ERA Check Standard	1	1	87 - 114	

Table C-2	Continued.
-----------	------------

Quarter	Sample Set	Parameter	Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD
			Blank	3	3	<2X MDL	N/A
			Matrix Spike	8	8	80-120	
Summer	NH3WQ090820-1	Ammonium	Matrix Spike Dup	9	9	80-120	
			Matrix Spike Precision	8	8		< 11%
			ERA Check Standard	1	1	87 - 114	
			Blank	3	3	<2X MDL	N/A
			Matrix Spike	10	10	80-120	
Fall	NH3WQ091103-1	Ammonium	Matrix Spike Dup	10	10	80-120	
			Matrix Spike Precision	10	10		< 11%
			ERA Check Standard	1	1	87 - 114	
		Blank	3	3	<2X MDL	N/A	
		Ammonium	Matrix Spike	10	9	80-120	
Fall	NH3WQ091104-1		Matrix Spike Dup	10	9	80-120	
			Matrix Spike Precision	10	10		< 11%
			ERA Check Standard	1	1	87 - 114	
			Blank	3	3	<2X MDL	N/A
			Matrix Spike	10	10	80-120	
Fall	NH3WQ091105-1	Ammonium	Matrix Spike Dup	10	10	80-120	
			Matrix Spike Precision	10	10		< 11%
			ERA Check Standard	1	1	87 - 114	
			Blank	3	2	<2X MDL	N/A
			Matrix Spike	11	11	80-120	
Fall	NH3WQ091110-1	Ammonium	Matrix Spike Dup	11	11	80-120	
			Matrix Spike Precision	11	11		< 11%
			ERA Check Standard	1	1	87 - 114	
			Blank	3	3	<2X MDL	N/A
			Matrix Spike	6	5	80-120	
Fall	NH3WQ091112-1	Ammonium	Matrix Spike Dup	6	5	80-120	
			Matrix Spike Precision	6	6		< 11%
			ERA Check Standard	1	1	87 - 114	

Table (C-2 Co	ntinued.
---------	--------	----------

Quarter	Sample Set	Parameter	Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD
			Blank	3	2	<2X MDL	N/A
			Matrix Spike	9	9	80-120	
Fall	NH3WQ091116-1	Ammonium	Matrix Spike Dup	9	8	80-120	
			Matrix Spike Precision	9	7		< 11%
			ERA Check Standard	1	1	87 - 114	
			Blank	3	3	<2X MDL	N/A
			Matrix Spike	10	8, 1*	80-120	
Winter	NH3WQ100209-1	Ammonium	Matrix Spike Dup	10	7	80-120	
			Matrix Spike Precision	10	9, 1**		< 11%
			ERA Check Standard	1	1	87 - 114	
		Blank	3	3	<2X MDL	N/A	
		Ammonium	Matrix Spike	14	10	80-120	
Winter	NH3WQ100210-1		Matrix Spike Dup	14	11	80-120	
			Matrix Spike Precision	14	11		< 11%
			ERA Check Standard	1	1	87 - 114	
			Blank	3	2	<2X MDL	N/A
			Matrix Spike	10	8	80-120	
Winter	NH3WQ100216-1	Ammonium	Matrix Spike Dup	10	7	80-120	
			Matrix Spike Precision	10	10		< 11%
			ERA Check Standard	1	1	87 - 114	
			Blank	3	3	<2X MDL	N/A
			Matrix Spike	9	9	80-120	
Winter	NH3WQ100217-1	Ammonium	Matrix Spike Dup	9	9	80-120	
			Matrix Spike Precision	9	8, 1*		< 11%
			ERA Check Standard	1	1	87 - 114	
			Blank	3	3	<2X MDL	N/A
			Matrix Spike	7	7	80-120	
Winter	NH3WQ100222-1	Ammonium	Matrix Spike Dup	7	7	80-120	
			Matrix Spike Precision	7	6		< 11%
			ERA Check Standard	1	1	87 - 114	

Table C-2	Continued.
-----------	------------

Quarter	Sample Set	Parameter	Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD
			Blank	3	3	<2X MDL	N/A
			Matrix Spike	8	8	80-120	
Winter	NH3WQ100223-1	Ammonium	Matrix Spike Dup	8	7	80-120	
			Matrix Spike Precision	8	7		< 11%
			ERA Check Standard	1	1	87 - 114	
			Blank	3	3	<2X MDL	N/A
			Matrix Spike	9	9	80-120	
Spring	NH3WQ100506-1	Ammonium	Matrix Spike Dup	9	9	80-120	
			Matrix Spike Precision	9	9		< 11%
			ERA Check Standard	1	1	87 - 114	
			Blank	3	3	<2X MDL	N/A
			Matrix Spike	6	6	80-120	
	NH3WQ100507-1	Ammonium	Matrix Spike Dup	6	6	80-120	
Spring			Matrix Spike Precision	6	6		< 11%
			ERA Check Standard	1	1	87 - 114	
			Blank	3	2	<2X MDL	N/A
			Matrix Spike	7	7	80-120	
Spring	NH3WQ100513-1	Ammonium	Matrix Spike Dup	7	7	80-120	
			Matrix Spike Precision	7	6		< 11%
			ERA Check Standard	1	1	87 - 114	
			Blank	3	3	<2X MDL	N/A
			Matrix Spike	11	11	80-120	
Spring	NH3WQ100517-1	Ammonium	Matrix Spike Dup	11	11	80-120	
			Matrix Spike Precision	11	11		< 11%
			ERA Check Standard	1	1	87 - 114	
			Blank	3	3	<2X MDL	N/A
			Matrix Spike	9	9	80-120	
Spring	NH3WQ100519-1	Ammonium	Matrix Spike Dup	9	9	80-120	
			Matrix Spike Precision	9	7, 1**		< 11%
			ERA Check Standard	1	1	87 - 114	

Table C-2 Continued.

Quarter	Sample Set	Parameter	Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD
			Blank	3	3	<2X MDL	N/A
			Matrix Spike	10	7	80-120	
Spring	NH3WQ100527-1	Ammonium	Matrix Spike Dup	10	9	80-120	
			Matrix Spike Precision	10	6		< 11%
			ERA Check Standard	1	1	87 - 114	
		Ammonium	Blank	3	3	<2X MDL	N/A
			Matrix Spike	5	5	80-120	
Spring	NH3WQ100603-1		Matrix Spike Dup	5	5	80-120	
			Matrix Spike Precision	5	3, 2**		< 11%
			ERA Check Standard	1	1	87 - 114	

* Recovery (70% or 130%) was out of control due to rounding.

** Matrix spike precision was out of control due to rounding. The associated method blank and check standard were in control and therefore the data were reported.

SEDIMENT CHEMISTRY NARRATIVE

FIRST QUARTER (JULY 2009)

Introduction

OCSD's ELOM laboratory received 70 sediment samples from the ocean monitoring staff during the month of July 2009. All samples were stored according to ELOM LOPM (OCSD 2009). All samples were analyzed for organochlorine pesticides, polychlorinated biphenyl congeners (PCBs), polycyclic aromatic hydrocarbons (PAHs), linear alkyl benzenes (LABs), trace metals, mercury, dissolved sulfides (DS), total organic carbon (TOC), and grain size.

Analytical Methods - PAHs and LABs

The analytical methods used to detect PAHs and LABs in the samples are described in the OCSD ELOM LOPM (OCSD 2009). All sediment samples were extracted using an accelerated solvent extractor (ASE) during the months of August through September 2009. Approximately 10 g (dry weight) of sample were used for each analysis. A separatory funnel extraction was performed using 100 mL of sample when field and rinse blanks were included in the batch.

A typical sample batch included 18 field samples with required quality control (QC) samples. Sample batches that were analyzed for PAHs included the following QC samples: 1 sand blank, 1 PAH reporting level spike, 2 standard reference materials (SRM), 1 PAH matrix spike set, and 2 sample extraction duplicates. There were 4 batches extracted and analyzed for PAHs. In addition, 1 batch contained 1 rinse sample and 1 field blank. MDLs for PAHs are presented in Table C-3. Acceptance criteria for PAH SRMs are presented in Table C-4.

QC samples for LAB analyses included 1 sand blank, 1 LAB reporting level spike, 2 SRM, 1 LAB matrix spike set, and 2 sample extraction duplicates. In addition, 1 batch contained a field blank and a rinse sample. There were 4 batches extracted and analyzed for LABs. MDLs for LABs are presented in Table C-3.

Sediment PAH and LAB QA/QC summary data are presented in Table C-5. All analyses were performed within holding times and with appropriate quality control measures, as stated in the program's Quality Assurance Project Plan (QAPP). Any variances are noted in the Comments/Notes section of each batch summary.

Analytical Methods - Organochlorine Pesticides and PCB Congeners

The analytical methods used to process the organochlorine pesticides and PCB congeners samples are described in the ELOM LOPM (OCSD 2009). An ASE was used to extract the sediment samples during the months of July through October 2009. All sediment extracts were analyzed by GC/MS. Approximately 10 g (dry weight) of sample were used for each analysis. If a field blank and rinse were included in the batch, a separatory funnel extraction was performed using 100 mL of sample.

A typical sample batch consisted of 18 field samples with required QC samples, which included 1 sand blank, 2 SRM, 1 PCB/pesticide reporting level spike, 1 PCB/pesticide matrix spike set, and 2 duplicate sample extractions. There were 3 batches extracted. In addition, 1 batch contained a rinse sample and a field blank. MDLs for PCBs/pesticides are

Table C-3. Method detection levels for PAH and LAB compounds in sediments, July 2009–June 2010.

Parameter	Accelerated Solvent Extraction SIM Detection Limit, (ng/g dry weight)	Parameter	Accelerated Solvent Extraction SIM Detection Limit, (ng/g dry weight)
	PAH Cor	npounds	·
1,6,7-Trimethylnaphthalene	0.20	Benzo[k]fluoranthene	0.20
1-Methylnaphthalene	0.30	Biphenyl	0.30
1-Methylphenanthrene	0.20	Chrysene	0.20
2,6-DimethyInaphthalene	0.30	Dibenz[a,h]anthracene	0.10
2-Methylnaphthalene	0.50	Dibenzothiophene	0.20
Acenaphthene	0.40	Fluoranthene	0.30
Acenaphthylene	0.60	Fluorene	0.20
Anthracene	0.70	Indeno[1,2,3-c,d]pyrene	0.20
Benz[a]anthracene	0.20	Naphthalene	0.50
Benzo[a]pyrene	0.10	Perylene	0.20
Benzo[b]fluoranthene	0.30	Phenanthrene	0.40
Benzo[e]pyrene	0.50	Pyrene	0.30
Benzo[g,h,I]perylene	0.30		
	PAH Alkylated	l Homologues	
C1-Chrysenes	2	C1-Fluoranthenes/Pyrenes	2
C2-Chrysenes	2	C1-Naphthalenes	2
C3-Chrysenes	2	C2-Naphthalenes	2
C4-Chrysenes	2	C3-Naphthalenes	2
C1-Dibenzothiophenes	2	C4-Naphthalenes	2
C2-Dibenzothiophenes	2	C1-Phenanthrenes/Anthracenes	2
C3-Dibenzothiophenes	2	C2-Phenanthrenes/Anthracenes	2
C1-Fluorenes	2	C3-Phenanthrenes/Anthracenes	2
C2-Fluorenes	2	C4-Phenanthrenes/Anthracenes	2
C3-Fluorenes	2		
	LAB Cor	npounds	
2-Phenyldecane	0.10	6-Phenyltetradecane	0.40
3-Phenyldecane	0.10	7-Phenyltetradecane	0.10
4-Phenyldecane	0.10	2-Phenylundecane	0.10
5-Phenyldecane	0.10	3-Phenylundecane	0.10
2-Phenyltridecane	0.30	4-Phenylundecane	0.10
3-Phenyltridecane	0.10	5-Phenylundecane	0.10
4-Phenyltridecane	0.20	6-Phenylundecane	0.10
5-Phenyltridecane	0.30	2-Phenyldodecane	0.20
6-Phenyltridecane+7-Phenyltridecane	0.40	3-Phenyldodecane	0.10
2-Phenyltetradecane	0.10	4-Phenyldodecane	0.20
3-Phenyltetradecane	0.10	5-Phenyldodecane	0.20
4-Phenyltetradecane	0.10	6-Phenyldodecane	0.20
5-Phenyltetradecane	0.20		

Table C-4.Acceptance criteria for standard reference materials of PAHs in sediments, July 2009–June
2010.

Compound Name	True Value	Certified Accep µg/	
oompound nume	hã\ã	Min.	Max.
SRM 1944A - Organics in I	Marine Sediment Nation	al Institute of Standards	and Technology.
Anthracene	1.77	0.44	2.21
Benz[a]anthracene	4.72	1.18	5.90
Benzo[a]pyrene	4.30	1.08	5.38
Benzo[b]fluoranthene	3.87	0.97	4.84
Benzo[e]pyrene	3.28	0.82	4.10
Benzo[g,h,i]perylene	2.84	0.71	3.55
Benzo[k]fluoranthene	2.30	0.58	2.88
Chrysene	4.86	1.22	6.08
Dibenz[a,h]anthracene	0.42	0.11	0.53
Fluoranthene	8.92	2.23	11.15
Indeno(1,2,3-c,d)pyrene	2.78	0.70	3.48
Naphthalene	1.65	0.41	2.06
Perylene	1.17	0.29	1.46
Phenanthrene	5.27	1.32	6.59
Pyrene	9.70	2.43	12.13
SRM 1941B - Organics in	Marine Sediment Nation	al Institute of Standards	and Technology
Anthracene	184	110	258
Benz[a]anthracene	335	201	469
Benzo[a]pyrene	358	215	501
Benzo[b]fluoranthene	453	272	634
Benzo[e]pyrene	325	195	455
Benzo[g,h,i]perylene	307	184	430
Benzo[k]fluoranthene	225	135	315
Chrysene	291	175	407
Dibenz[a,h]anthracene	53	32	74
Fluoranthene	651	391	911
Indeno(1,2,3-c,d)pyrene	341	205	477
Naphthalene	848	509	1,187
Perylene	397	238	556
Phenanthrene	406	244	568
Pyrene	581	349	813

Table C-5. Sediment PAH/LAB QA/QC summary, July 2009–June 2010.

Orange County Sanitation District, California.

Quarter	Sample Set	Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD	Comments
		PAH SRM 1944	15	10	25% of the certified or		67% Pass
		PAH SRM 1941b	15	13	published acceptance limits ¹	N14	87% Pass
		PAH Reporting Level Spike	25	25	CO 400	NA	100% Pass
		LAB Reporting Level Spike	25	25	60 -120		100% Pass
		PAH Matrix Spike					
		Based on Mean of MS and MSD	25	23	40 - 120	NA	92% Pass
1	Sedcore_Jul09_DF	LAB Matrix Spike					
		Based on Mean of MS and MSD	25	23	40 - 120	NA	92% Pass
		PAH Duplicate Analysis - #1	25	24			96% Pass
		PAH Duplicate Analysis - #2	17	10	NA	< 20% @ 3 x MDL of Sample Mean	59% Pass
		LAB Duplicate Analysis - #1	23	22	NA		96% Pass
		PAH Duplicate Analysis - #2	19	16			84% Pass
		PAH SRM 1944	15	11	25% of the certified or		73% Pass
		PAH SRM 1941b	15	14	published acceptance limits ¹	NIA	93% Pass
		PAH Reporting Level Spike	25	19	CO 400	NA	76% Pass
		LAB Reporting Level Spike	25	18	60 -120		72% Pass
		PAH Matrix Spike					
4		Based on Mean of MS and MSD	25	25	40 - 120	NA	100% Pass
Ĩ	Sedcore_Jul09_ DG	LAB Matrix Spike					
		Based on Mean of MS and MSD	25	25	40 – 120	NA	100% Pass
		PAH Duplicate Analysis - #1	10	4			40% Pass
		PAH Duplicate Analysis - #2	10	10		< 20% @ 3 x MDL	100% Pass
		LAB Duplicate Analysis - #1	11	9	NA	of Sample Mean	81% Pass
		PAH Duplicate Analysis - #2	13	9			69% Pass

N/A=not applicable

Quarter	Sample Set	Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD	Comments
		PAH SRM 1944	15	13	25% of the certified or		87% Pass
		PAH SRM 1941b	15	11	published acceptance limits ¹		73% Pass
		PAH Reporting Level Spike	25	22	00, 400	NA	88% Pass
		LAB Reporting Level Spike	25	25	60 -120		100% Pass
		PAH Matrix Spike					
4		Based on Mean of MS and MSD	25	25	40 - 120	NA	100% Pass
1	Sedcore_Jul09_DH	LAB Matrix Spike					
		Based on Mean of MS and MSD	25	25	40 - 120	NA	100% Pass
		PAH Duplicate Analysis - #1	15	13			87% Pass
		PAH Duplicate Analysis - #2	14	13	NA	< 20% @ 3 x MDL	93% Pass
		LAB Duplicate Analysis - #1	20	13	NA NA	of Sample Mean	65% Pass
		LAB Duplicate Analysis - #2	15	15			100% Pass
1	1	PAH SRM 1944	15	10	25% of the certified or		67% Pass
		PAH SRM 1941b	15	10	published acceptance limits ¹	NA	67% Pass
		PAH Reporting Level Spike	25	24	60 -120	NA	96% Pass
		LAB Reporting Level Spike	25	24	60 - 120		96% Pass
		PAH Matrix Spike					
	Sedcore_Jul09_DI	Based on Mean of MS and MSD	25	24	40 - 120	NA	96% Pass
	Sedcore_Juloa_DI	LAB Matrix Spike					
		Based on Mean of MS and MSD	25	23	40 - 120	NA	92% Pass
		PAH Duplicate Analysis - #1	11	9			81% Pass
		PAH Duplicate Analysis - #2	9	9	NA	< 20% @ 3 x MDL	100% Pass
		LAB Duplicate Analysis - #1	14	13	NA	of Sample Mean	93% Pass
		LAB Duplicate Analysis - #2	8	6			75% Pass

Table C-5 Continued.

N/A=not applicable

Quarter	Sample Set	Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD	Comments
		PAH SRM 1944	15	9	25% of the certified or		60% Pass
		PAH SRM 1941b	15	12	published acceptance limits ¹	NA	80% Pass
		PAH Reporting Level Spike	25	25	60 -120		100% Pass
2	Sedcore_Oct09_DJ	PAH Matrix Spike					
		Based on Mean of MS and MSD	25	25	40 - 120	NA	100% Pass
		PAH Duplicate Analysis - #1	17	11		< 20% @ 3 x MDL	65% Pass
		PAH Duplicate Analysis - #2	N/A	N/A	NA	of Sample Mean	N/A
3		PAH SRM 1944	15	14	25% of the certified or		93% Pass
		PAH SRM 1941b	15	13	published acceptance limits ¹	NA	87% Pass
		PAH Reporting Level Spike	25	22	60 -120		88% Pass
	Sedcore_Jan10_DK	PAH Matrix Spike					
		Based on Mean of MS and MSD	25	25	40 - 120	NA	100% Pass
		PAH Duplicate Analysis - #1	12	10	NA	< 20% @ 3 x MDL	83% Pass
		PAH Duplicate Analysis - #2	N/A	N/A	NA	of Sample Mean	N/A
		PAH SRM 1944	15	1	25% of the certified or		*7% Pass
		PAH SRM 1941b	15	12	published acceptance limits ¹	NA	80% Pass
		PAH Reporting Level Spike	25	24	60 -120		96% Pass
4	Sedcore_Apr10_DL	PAH Matrix Spike					
		Based on Mean of MS and MSD	25	24	40 - 120	NA	96% Pass
		PAH Duplicate Analysis - #1	23	20		< 20% @ 3 x MDL	87% Pass
		PAH Duplicate Analysis - #2	N/A	N/A	NA	of Sample Mean	N/A

Table C-5 Continued.

certified values. * PAH results for SRM 1944 were low, but the surrogate recoveries were within the limits. The reason for low recoveries of the PAHs is being investigated.

N/A=not applicable

presented in Tables C-6 and C-7. Acceptance Criteria for PCB/pesticide SRMs are presented in Table C-8.

Sediment PCB/pesticide QA/QC summary data are presented in Table C-9. All analyses were performed within QAPP stated holding times and with appropriate quality control measures. When constituent concentrations exceeded the calibration range of the instrument, dilutions were performed and the samples reanalyzed. Any variances are noted in the Comments/Notes section of each batch summary.

Analytical Methods - Trace Metals

Dried sediment samples were analyzed for trace metals in accordance with methods in the ELOM LOPM (OCSD 2009). A typical sample batch for silver, cadmium, chromium, copper, nickel, lead, zinc, selenium, arsenic, and beryllium analyses included 3 blanks, a blank spike, and 1 SRM. Additionally, duplicate samples, spiked samples and duplicate spiked samples were analyzed a minimum of once every 10 sediment samples. QC for a typical sample batch for aluminum and iron analyses included 3 blanks, an SRM, sediment samples with duplicates, spiked samples and duplicate spiked samples analyzed a minimum of once every 10 sediment samples. The analysis of the blank spike and SRM provided a measure of the accuracy of the analysis. The analysis of the sample, its duplicate, and the 2 spiked samples were evaluated for spike recoveries because the spike levels were extremely low compared to the concentrations of aluminum and iron in the native samples. The samples were spiked at 20 mg/kg dry weight whereas the native concentrations ranged between 5,000 and 35,000 mg/kg dry weight.

All samples were analyzed within their 6-month holding times. If any analyte exceeded the appropriate calibration curve, and Linear Dynamic Range, the sample was diluted and reanalyzed. Reporting limits (RLs) for metals are presented in Table C-10. Acceptance criteria for trace metal SRMs are presented in Table C-11.

The digested samples were analyzed for silver, cadmium, chromium, copper, nickel, lead, zinc, selenium, arsenic, and beryllium by inductively coupled mass spectroscopy (ICPMS). Aluminum and iron were analyzed using inductively coupled emission spectroscopy (ICPES).

Sediment trace metal QA/QC summary data are presented in Table C-12. The relative percent differences (RPDs) between the sample and its duplicate analysis ranged from - 7.1% to 5.4%. The RPDs for the spike and spike duplicate analysis ranged from -4.4% to 3.5%.

Analytical Methods - Mercury

Dried sediment samples were analyzed for mercury in accordance with methods described in the ELOM LOPM (OCSD 2009). QC for a typical batch included a blank, a blank spike, and a SRM. Sediment samples with duplicates, spiked samples and duplicate spiked samples were run approximately once every 10 sediment samples. All samples were analyzed within their 6-month holding time. When sample mercury concentration exceeded the appropriate calibration curve, the sample was diluted with the reagent blank and reanalyzed. Approximately 5.0 g of dried sediment was digested in aqua regia using a 95°C hot block. Once the samples were cooled, ultrapure water and potassium permanganate were added to each sample and the samples were redigested. Once the

Table C-6.Method detection levels for PCB congeners and pesticides in sediments using
GC/MS Ion Trap, July 2009–June 2010.

Parameter	ASE & GC/MS/MS Method Detection Limit (ng/g dry weight)	Parameter	ASE & GC/MS/MS Method Detection Limit (ng/g dry weight)
Aldrin	0.12	PCB 101	0.08
alpha-Chlordane	0.17	PCB 105	0.19
cis-Nonachlor	0.20	PCB 110	0.16
Dieldrin	0.32	PCB 114	0.22
Endrin	0.53	PCB 118	0.18
gamma-BHC	0.12	PCB 119	0.09
gamma-Chlordane	0.15	PCB 123	0.18
Heptachlor	0.11	PCB 126	0.31
Heptachlor epoxide	0.19	PCB 128	0.22
Hexachlorobenzene	0.21	PCB 138	0.14
Mirex	0.14	PCB 149	0.12
trans-Nonachlor	0.16	PCB 151	0.11
2,4'-DDD (o,p'-DDD)	0.15	PCB 153	NA
2,4'-DDE (o,p'-DDE)	0.13	PCB 153/168	0.28
2,4'-DDT (o,p'-DDT)	0.16	PCB 156	0.21
4,4'-DDD (p,p'-DDD)	0.17	PCB 157	0.22
4,4'-DDE (p,p'-DDE)	0.15	PCB 158	0.17
4,4'-DDT (p,p'-DDT)	0.18	PCB 167	0.28
4,4'-DDMU	0.50 ¹	PCB 168	NA
PCB 8	0.14	PCB 169	0.30
PCB 18	0.14	PCB 170	0.17
PCB 28	0.09	PCB 177	0.11
PCB 37	0.24	PCB 180	0.16
PCB 44	0.11	PCB 183	0.19
PCB 49	0.09	PCB 187	0.18
PCB 52	0.08	PCB 189	0.22
PCB 66	0.20	PCB 194	0.14
PCB 70	0.20	PCB 195	0.14
PCB 74	0.28	PCB 200	0.21
PCB 77	0.21	PCB 201	0.20
PCB 81	0.24	PCB 206	0.16
PCB 87	0.13	PCB 209	0.10
PCB 99	0.11		

Orange County Sanitation District, California.

NA = Not analyzed.

Table C-7. Method detection levels for PCB congeners and pesticides in sediments using GC/MS DSQII, July 2009–June 2010.

Parameter	ASE & GC/MS/MS Method Detection Limit (ng/g dry weight)	Parameter	ASE & GC/MS/MS Method Detection Limit (ng/g dry weight)
Aldrin	0.06	PCB 101	0.13
alpha-Chlordane	0.13	PCB 105	0.14
<i>cis</i> -Nonachlor	0.08	PCB 110	0.07
Dieldrin	0.16	PCB 114	0.13
Endrin	0.15	PCB 118	0.07
gamma-BHC	0.06	PCB 119	0.11
gamma-Chlordane	0.05	PCB 123	0.11
Heptachlor	0.06	PCB 126	0.08
Heptachlor epoxide	0.08	PCB 128	0.14
Hexachlorobenzene	0.04	PCB 138	0.13
Mirex	0.14	PCB 149	0.11
trans-Nonachlor	0.09	PCB 151	0.10
2,4'-DDD (o,p'-DDD)	0.14	PCB 153	NA
2,4'-DDE (o,p'-DDE)	0.11	PCB 153/168	0.25
2,4'-DDT (o,p'-DDT)	0.14	PCB 156	0.07
4,4'-DDD (p,p'-DDD)	0.10	PCB 157	0.09
4,4'-DDE (p,p'-DDE)	0.08	PCB 158	0.12
4,4'-DDT (p,p'-DDT)	0.13	PCB 167	0.11
4,4'-DDMU	0.08	PCB 168	NA
PCB 8	0.06	PCB 169	0.13
PCB 18	0.04	PCB 170	0.08
PCB 28	0.05	PCB 177	0.10
PCB 37	0.15	PCB 180	0.11
PCB 44	0.09	PCB 183	0.13
PCB 49	0.07	PCB 187	0.11
PCB 52	0.05	PCB 189	0.10
PCB 66	0.09	PCB 194	0.17
PCB 70	0.11	PCB 195	0.13
PCB 74	0.11	PCB 200	0.11
PCB 77	0.07	PCB 201	0.17
PCB 81	0.07	PCB 206	0.16
PCB 87	0.06	PCB 209	0.29
PCB 99	0.17		

Orange County Sanitation District, California.

NA = Not analyzed.

Table C-8. Acceptance criteria for standard reference materials of pesticides/PCBs in sediments, July 2009–June 2010.

Parameter	True Value		ince Range ng/g)	Parameter	True Value	•	nce Range g/g)
	(ng/g)	min. max			(ng/g)	min.	max.
	SRM 1944a - Orç	•		ational Institute of S y Waterway Sedime		chnology,	
alpha-Chlordane	16.51	15.7	17.3	PCB 99	37.5	35.1	39.9
<i>cis</i> -Nonachlor *	3.70	3.00	4.40	PCB 101	73.4	70.9	75.9
gamma-Chlordane *	8.00	6.00	10.0	PCB 105	24.5	23.4	25.6
Hexachlorobenzene	6.0	5.68	6.38	PCB 110	63.5	58.8	68.2
trans-Nonachlor	8.20	7.69	8.71	PCB 118	58.0	53.7	62.3
2,4'-DDD *	38.0	30.0	46.0	PCB 128	8.47	8.19	8.75
2,4'-DDE *	19.0	16.0	22.0	PCB 138	62.1	59.1	65.1
4,4'-DDD *	108	92.0	124	PCB 149	49.7	48.5	50.9
4,4'-DDE *	86.0	74.0	98.0	PCB 151	16.93	16.57	17.3
4,4'-DDT	119	108	130	PCB 153	74.0	71.1	76.9
2,4'-DDD *	38.0	30.0	46.0	PCB 156	6.52	5.86	7.18
PCB 8	22.3	20.0	24.6	PCB 170	22.6	21.2	24.0
PCB 18	51.0	48.4	53.6	PCB 180	44.3	43.1	45.5
PCB 28	80.8	78.1	83.5	PCB 183	12.19	11.6	12.8
PCB 44	60.2	58.2	62.2	PCB 187	25.1	24.1	26.1
PCB 49	53.0	51.3	54.7	PCB 194	11.2	9.80	12.6
PCB 52	79.4	77.4	81.4	PCB 195	3.75	3.36	4.14
PCB 66	71.9	67.6	76.2	PCB 206	9.21	8.70	9.72
PCB 87	29.9	25.6	34.2				
:	SRM 1941B - Org			ational Institute of S y Waterway Sedime		chnology,	
alpha-Chlordane	0.850	0.740	0.960	PCB 99	2.90	2.54	3.26
cis-Nonachlor	0.378	0.325	0.431	PCB 101	5.11	4.77	5.45
gamma-Chlordane	0.566	0.473	0.659	PCB 105	1.43	1.33	1.53
Hexachlorobenzene	5.83	5.45	6.21	PCB 110	4.62	4.26	4.98
trans-Nonachlor	0.438	0.365	0.511	PCB 118	4.23	4.04	4.42
2.4'-DDE *	0.380	0.260	0.500	PCB 128	0.696	0.652	0.740
4,4'-DDE	3.22	2.94	3.50	PCB 138	3.60	3.32	3.88
4,4'-DDD	4.66	4.20	5.12	PCB 149	4.35	4.09	4.61
4,4'-DDT *	1.12	0.700	1.54	PCB 153/168	5.47	5.15	5.79
PCB 8	1.65	1.46	1.84	PCB 156	0.507	0.417	0.597
PCB 18	2.39	2.10	2.68	PCB 158 *	0.650	0.500	0.800
PCB 28	4.52	3.95	5.09	PCB 170	1.35	1.26	4 4 4
					3.24	0.70	1.44
PCB 44	3.85	3.65	4.05	PCB 180	-	2.73	3.75
PCB 49	4.34	4.06	4.62	PCB 183	0.979	0.892	3.75 1.07
PCB 49 PCB 52	4.34 5.24	4.06 4.96		PCB 183 PCB 187	-	0.892 1.95	3.75 1.07 2.39
PCB 49 PCB 52 PCB 66	4.34	4.06	4.62	PCB 183	0.979	0.892	3.75 1.07
PCB 49 PCB 52 PCB 66 PCB 70 *	4.34 5.24 4.96 4.99	4.06 4.96	4.62 5.52	PCB 183 PCB 187 PCB 194 PCB 195	0.979 2.17	0.892 1.95	3.75 1.07 2.39
PCB 49 PCB 52 PCB 66 PCB 70 *	4.34 5.24 4.96	4.06 4.96 4.43	4.62 5.52 5.49	PCB 183 PCB 187 PCB 194	0.979 2.17 1.04	0.892 1.95 0.980	3.75 1.07 2.39 1.10
PCB 49 PCB 52 PCB 66 PCB 70 * PCB 74 *	4.34 5.24 4.96 4.99	4.06 4.96 4.43 4.70	4.62 5.52 5.49 5.28	PCB 183 PCB 187 PCB 194 PCB 195	0.979 2.17 1.04 0.645	0.892 1.95 0.980 0.585	3.75 1.07 2.39 1.10 0.705
PCB 49 PCB 52 PCB 66 PCB 70 * PCB 74 * PCB 77 * PCB 87	4.34 5.24 4.96 4.99 2.04 0.310 1.14	4.06 4.96 4.43 4.70 1.89 0.280 0.980	4.62 5.52 5.49 5.28 2.19	PCB 183 PCB 187 PCB 194 PCB 195 PCB 201 PCB 206 PCB 209	0.979 2.17 1.04 0.645 0.770	0.892 1.95 0.980 0.585 0.736 2.23 4.41	3.75 1.07 2.39 1.10 0.705 0.804 2.61 5.31
PCB 49 PCB 52	4.34 5.24 4.96 4.99 2.04 0.310	4.06 4.96 4.43 4.70 1.89 0.280	4.62 5.52 5.49 5.28 2.19 0.340	PCB 183 PCB 187 PCB 194 PCB 195 PCB 201 PCB 206	0.979 2.17 1.04 0.645 0.770 2.42	0.892 1.95 0.980 0.585 0.736 2.23	3.75 1.07 2.39 1.10 0.705 0.804 2.61

Orange County Sanitation District, California.

* non-certified

Table C-9. Sediment PCB/pesticide QA/QC summary, July 2009–June 2010.

Quarter	Sample Set	Parameter	Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD
			SRM 1944a	27	24	25% of the certified	
			SRM 1941b	27	25	ranges or published acceptance limits	NA
		Reporting Level Spike	44	44	60 -120	NA	
		PCB	Matrix Spike	44	44	40 - 120	NA
			Matrix Spike Dup	44	44	40 - 120	NA
			Matrix Spike Precision	44	44	NA	< 20%
			SRM 1944a	4	4	25% of the certified	NA
			SRM 1941b	7	7	ranges or published acceptance limits	NA
1	EU	EH Pesticide	Reporting Level Spike	19	18	60 -120	NA
I	ЕП		Matrix Spike	19	18	40 - 120	NA
			Matrix Spike Dup	19	18	40 - 120	NA
			Matrix Spike Precision	19	18	NA	< 20%
		PCB	Duplicate 1	16	15	NA	< 20% @ 3 x MDL
		Pesticides	Duplicate 1	2	1	NA	of Sample Mean.
		PCBs and Pesticides	Duplicate 1 Sum	1	1	NA	NA
		PCB	Duplicate 2	1	1	NA	< 20% @ 3 x MDI
		Pesticides	Duplicate 2	1	1	NA	of Sample Mean.
		PCBs and Pesticides	Duplicate 2 Sum	1	1	NA	NA
atypical ci			ted after sample injectio	ns, extraction no	tes, and instrume	ent conditions did not	indicate any
			SRM 1944a	27	16	25% of the certified	

Orange County Sanitation District, California.

SRM 1944a 27 16 ranges or published NA SRM 1941b 27 25 acceptance limits Reporting Level Spike 44 44 60 -120 NA PCB 44 40 - 120 NA Matrix Spike 41 Matrix Spike Dup 44 40 - 120 NA 44 < 20% Matrix Spike Precision 44 NA 35 25% of the certified SRM 1944a 4 0 ranges or published NA SRM 1941b 7 6 acceptance limits Reporting Level Spike 19 19 60 -120 NA ΕI Pesticide 1 Matrix Spike 19 18 40 - 120 NA Matrix Spike Dup 19 19 40 - 120 NA Matrix Spike Precision 19 14 NA < 20% PCB Duplicate 1 0 0 NA < 20% @ 3 x MDL of Sample Mean. Pesticide Duplicate 1 2 1 NA PCBs and Pesticides Duplicate 1 Sum NA NA 1 0 0 PCB Duplicate 2 0 NA < 20% @ 3 x MDL of Sample Mean. Pesticide Duplicate 2 NA 1 1 PCBs and Pesticides Duplicate 2 Sum 1 1 NA NA

Comments:

Review of calibration check standards injected after sample injections, extraction notes, and instrument conditions did not indicate any atypical circumstances.

NA = Not Applicable

	Table	C-9	Continued
--	-------	-----	-----------

Quarter	Sample Set	Parameter	Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD
			SRM 1944a	27	27	25% of the certified	NIA
			SRM 1941b	27	27	ranges or published acceptance limits	NA
			Reporting Level Spike	44	44	60 -120	NA
		PCB	Matrix Spike	44	44	40 - 120	NA
			Matrix Spike Dup	44	38	40 - 120	NA
			Matrix Spike Precision	44	43	NA	< 20%
			SRM 1944a	4	7	25% of the certified	NIA
			SRM 1941b	7	7	ranges or published acceptance limits	NA
		Destable	Reporting Level Spike	19	19	60 -120	NA
1	EJ	Pesticide	Matrix Spike	19	19	40 - 120	NA
			Matrix Spike Dup	19	17	40 - 120	NA
			Matrix Spike Precision	19	19	NA	< 20%
		PCB	Duplicate 1	2	2	NA	< 20% @ 3 x MD
		Pesticide	Duplicate 1	1	1	NA	of Sample Mean
		PCBs and Pesticides	Duplicate 1 Sum	1	1	NA	NA
		PCB	Duplicate 2	2	1	NA	< 20% @ 3 x MD
		Pesticide	Duplicate 2	2	2	NA	of Sample Mean
		PCBs and Pesticides	Duplicate 2 Sum	1	1	NA	NA
atypical ci			ted after sample injectio	ns, extraction no	tes, and instrume	ent conditions did not	indicate any
			SRM 1944a	27	27	25% of the certified	
			SRM 1941b	27	27	ranges or published acceptance limits	NA
		DOD	Reporting Level Spike	44	42	60 -120	NA
		PCB	Matrix Spike	44	44	40 - 120	NA
			Matrix Spike Dup	44	44	40 - 120	NA
	1	1		1	1		

			SRM 1944a	27	27	25% of the certified ranges or published	NA
		SRM 1941b	27	27	acceptance limits	INA	
		РСВ	Reporting Level Spike	44	42	60 -120	NA
		РСВ	Matrix Spike	44	44	40 - 120	NA
			Matrix Spike Dup	44	44	40 - 120	NA
			Matrix Spike Precision	44	42	NA	< 20%
			SRM 1944a	4	4	25% of the certified	NA
		EK Pesticide	SRM 1941b	7	7	 ranges or published acceptance limits 	INA
1	ГV		Reporting Level Spike	19	18	60 -120	NA
I	EK		Matrix Spike	19	19	40 - 120	NA
			Matrix Spike Dup	19	19	40 - 120	NA
			Matrix Spike Precision	19	19	NA	< 20%
		РСВ	Duplicate 1	3	3	NA	< 20% @ 3 x MDL
		Pesticide	Duplicate 1	4	4	NA	of Sample Mean.
	PCBs a	PCBs and Pesticides	Duplicate 1 Sum	1	1	NA	NA
		РСВ	Duplicate 2	4	4	NA	< 20% @ 3 x MDL
		Pesticide	Duplicate 2	3	2	NA	of Sample Mean.
		PCBs and Pesticides	Duplicate 2 Sum	1	0	NA	NA

Comments:

Review of calibration check standards injected after sample injections, extraction notes, and instrument conditions did not indicate any atypical circumstances.

NA = Not Applicable

Quarter	Sample Set	Parameter	Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD
			SRM 1944a	27	27	25% of the certified	NIA
			SRM 1941b	27	25	ranges or published acceptance limits	NA
		РСВ	Reporting Level Spike	44	43	60 -120	NA
		РСВ	Matrix Spike	44	44	40 - 120	NA
			Matrix Spike Dup	44	44	40 - 120	NA
			Matrix Spike Precision	44	44	NA	< 20%
			SRM 1944a	4	4	25% of the certified	NA
2	EL		SRM 1941b	7	6	ranges or published acceptance limits	NA
		During	Reporting Level Spike	19	19	60 -120	NA
		Pesticide	Matrix Spike	19	19	40 - 120	NA
			Matrix Spike Dup	19	19	40 - 120	NA
			Matrix Spike Precision	19	18	NA	< 20%
		PCB	Duplicate 1	0	0	NA	< 20% @ 3 x ME
		Pesticide	Duplicate 1	2	2	NA	of Sample Mear
						N 14	NA
atypical c	f calibration ircumstance		Duplicate 1 Sum	1 ons, extraction no	0 tes, and instrume	NA ent conditions did not	
Review of atypical c	f calibration	check standards inject	· ·		-	ent conditions did not 25% of the certified	indicate any
Review of atypical c	f calibration ircumstance	check standards inject	ted after sample injectio	ns, extraction no	tes, and instrume	ent conditions did not	
Review of itypical c	f calibration ircumstance	check standards injec	srm 1944a	ns, extraction no	tes, and instrume	ent conditions did not 25% of the certified ranges or published	indicate any
Review of itypical c	f calibration ircumstance	check standards inject	SRM 1944a	27 27	tes, and instrume 27 27	ent conditions did not 25% of the certified ranges or published acceptance limits	indicate any NA
Review of atypical c	f calibration ircumstance	check standards injec	SRM 1944a SRM 1941b Reporting Level Spike	27 27 27 44	27 27 44	25% of the certified ranges or published acceptance limits 60 -120	indicate any NA NA
Review of atypical c	f calibration ircumstance	check standards injec	SRM 1944a SRM 1944b Reporting Level Spike Matrix Spike	27 27 27 44 44	27 27 27 44 44	25% of the certified ranges or published acceptance limits 60 -120 40 - 120	indicate any NA NA NA
Review of atypical c	f calibration ircumstance	check standards injec	SRM 1944a SRM 1944a SRM 1941b Reporting Level Spike Matrix Spike Matrix Spike Dup	27 27 27 44 44 44	27 27 27 44 44 43	ent conditions did not 25% of the certified ranges or published acceptance limits 60 -120 40 - 120 40 - 120 NA 25% of the certified	NA NA NA NA A < 20%
Review of atypical c	f calibration ircumstance	check standards injec	SRM 1944a SRM 1944a SRM 1941b Reporting Level Spike Matrix Spike Matrix Spike Dup Matrix Spike Precision	27 27 27 44 44 44 44 44	27 27 27 44 44 43 44	25% of the certified ranges or published acceptance limits 60 -120 40 - 120 40 - 120 NA	NA NA NA NA NA
Review of typical c IA = Not	f calibration ircumstance applicable	check standards injectes.	SRM 1944a SRM 1944a SRM 1941b Reporting Level Spike Matrix Spike Matrix Spike Dup Matrix Spike Precision SRM 1944a	27 27 27 44 44 44 44 44 44 44	27 27 27 44 44 43 44 43 44 3	ent conditions did not 25% of the certified ranges or published acceptance limits 60 -120 40 - 120 40 - 120 NA 25% of the certified ranges or published	NA NA NA NA A < 20%
Review of typical c IA = Not	f calibration ircumstance applicable	check standards injec	SRM 1944a SRM 1944a SRM 1941b Reporting Level Spike Matrix Spike Matrix Spike Dup Matrix Spike Precision SRM 1944a SRM 1941b	27 27 27 44 44 44 44 44 44 44 7	27 27 27 44 43 44 3 7	25% of the certified ranges or published acceptance limits 60 -120 40 - 120 40 - 120 NA 25% of the certified ranges or published acceptance limits	NA NA NA NA < 20% NA
Review of typical c IA = Not	f calibration ircumstance applicable	check standards injectes.	SRM 1944a SRM 1944a SRM 1941b Reporting Level Spike Matrix Spike Matrix Spike Dup Matrix Spike Precision SRM 1944a SRM 1941b Reporting Level Spike	27 27 27 44 44 44 44 44 44 44 7 19	27 27 44 43 44 3 7 19	ent conditions did not 25% of the certified ranges or published acceptance limits 60 -120 40 - 120 40 - 120 NA 25% of the certified ranges or published acceptance limits 60 -120	INDICATE ANY
Review of httpical c NA = Not	f calibration ircumstance applicable	check standards injectes.	SRM 1944a SRM 1944a SRM 1941b Reporting Level Spike Matrix Spike Dup Matrix Spike Precision SRM 1944a SRM 1944b Reporting Level Spike Matrix Spike	27 27 27 44 44 44 44 44 44 44 7 19 19	27 27 27 44 44 43 44 3 7 19 19	ent conditions did not 25% of the certified ranges or published acceptance limits 60 -120 40 - 120 40 - 120 NA 25% of the certified ranges or published acceptance limits 60 -120 40 - 120	indicate any NA NA NA A A NA A NA NA NA NA NA NA NA
Review of httpical c NA = Not	f calibration ircumstance applicable	check standards injectes.	SRM 1944a SRM 1944a SRM 1941b Reporting Level Spike Matrix Spike Dup Matrix Spike Precision SRM 1944a SRM 1944b Reporting Level Spike Matrix Spike Matrix Spike	27 27 27 44 44 44 44 44 44 44 7 19 19 19	27 27 27 44 43 44 3 7 19 19 19	ent conditions did not 25% of the certified ranges or published acceptance limits 60 -120 40 - 120 40 - 120 NA 25% of the certified ranges or published acceptance limits 60 -120 40 - 120 40 - 120	Indicate any NA NA NA < 20% NA NA NA NA NA
Review of typical c IA = Not	f calibration ircumstance applicable	check standards injectes.	SRM 1944a SRM 1944a SRM 1941b Reporting Level Spike Matrix Spike Dup Matrix Spike Precision SRM 1944a SRM 1941b Reporting Level Spike Matrix Spike Matrix Spike Dup Matrix Spike Dup	27 27 27 44 44 44 44 44 44 44 19 19 19 19	27 27 44 43 44 3 7 19 19 19 19 19	ent conditions did not 25% of the certified ranges or published acceptance limits 60 -120 40 - 120 NA 25% of the certified ranges or published acceptance limits 60 -120 40 - 120 40 - 120 40 - 120 NA	Indicate any NA NA NA A NA NA NA A A A A A A A A A

Table C-9 Continued.

Review of calibration check standards injected after sample injections, extraction notes, and instrument conditions did not indicate any atypical circumstances.

NA = Not applicable

Number of Number of Target Sample Target Accuracy Description Compounds Compounds Precision % Quarter Parameter % Recovery Set Tested Passed RPD 25% of the certified ranges or published SRM 1944a 27 21 NA SRM 1941b 27 25 acceptance limits Reporting Level Spike 44 40 60 -120 NA PCB Matrix Spike 44 43 40 - 120 NA Matrix Spike Dup 44 43 40 - 120 NA Matrix Spike Precision 44 44 NA < 20% 25% of the certified SRM 1944a 4 4 ranges or published NA ΕN SRM 1941b 7 7 4 acceptance limits Reporting Level Spike 17 60 -120 NA 19 Pesticide 19 40 - 120 NA Matrix Spike 19 Matrix Spike Dup 19 19 40 - 120 NA Matrix Spike Precision 19 19 NA < 20% PCB Duplicate 1 3 3 NA < 20% @ 3 x MDL of Sample Mean. Pesticide Duplicate 1 1 1 NA PCBs and Pesticides Duplicate 1 Sum 1 1 NA NA

Table C-9 Continued.

Comments:

Review of calibration check standards injected after sample injections, extraction notes, and instrument conditions did not indicate any atypical circumstances.

NA = Not applicable

Table C-10. Method detection limits for trace metals in sediments, July 2009–June 2010.

Orange County Sanitation District, California.	
--	--

Parameter	Detection Limits (mg/kg dry weight)
Aluminum	50
Arsenic	0.15
Beryllium	0.01
Cadmium	0.01
Chromium	0.15
Copper	0.10
Iron	50
Lead	0.10
Nickel	0.10
Mercury	0.00011
Selenium	0.15
Silver	0.02
Zinc	0.15

Table C-11. Acceptance criteria for standard reference materials of metals in sediments, July 2009– June 2010.

Parameter	True Value (mg/kg)	Certified Acce (mg	ptance Criteria /kg)								
	(Min.	Max.								
Resource Technology Corporation CRM016-050 Natural Matrix Certified Reference Material Lot BE016											
Mercury	0.158	0.00	0.357								
Priority Pollutn		ce Associates D056-540 ve Digestion Environmental Reso	urce Associates								
Aluminum	10400	6370	14400								
Arsenic	280	226	333								
Beryllium	51	42.4	59.6								
Cadmium	182	149	215								
Chromium	142	115	170								
Copper	132	110	155								
Iron	16600	9490	23700								
Lead	72.2	59.1	85.4								
Nickel	155	128	182								
Selenium	165	128	203								
Silver	126	83.7	169								
Zinc	346	273	418								

Table C-12. Sediment metals QA/QC summary, July 2009–June 2010.

Quarter	Sample Set	Parameter	Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD
		Arsenic,	Blank	10	10	<3X MDL	N/A
		Beryllium,	Blank Spike	10	10	90-110	N/A
		Cadmium, Chromium.	Matrix Spike	10	10	70-130	
Summer	HMSED090825-1	Copper,	Matrix Spike Dup	10	10	70-130	
Cuminor		Lead, Nickel,	Matrix Spike Precision	10	10		< 20%
		Selenium,	Duplicate Analysis	10	10	NA	@ <u>></u> 10 X MDL < 20%
		Silver, Zinc	CRM Analysis	10	10	80-120% or certified value, whichever is greater.	
Summer		Arsenic,	Blank	10	10	<3X MDL	N/A
	HMSED090929-1	Beryllium,	Blank Spike	10	10	90-110	N/A
		Cadmium, Chromium.	Matrix Spike	10	10	70-130	
		Copper,	Matrix Spike Dup	10	10	70-130	
		Lead, Nickel, Selenium, Silver, Zinc	Matrix Spike Precision	10	10		< 20%
			Duplicate Analysis	10	10	NA	@ <u>></u> 10 X MDL < 20%
			CRM Analysis	10	10	80-120% or certified value, whichever is greater.	
		Arsenic,	Blank	10	10	<3X MDL	N/A
		Beryllium,	Blank Spike	10	10	90-110	N/A
		Cadmium, Chromium.	Matrix Spike	10	10	70-130	
Summer	HMSED091028-1	Copper,	Matrix Spike Dup	10	10	70-130	
Cuminor		Lead, Nickel, Selenium, Silver, Zinc	Matrix Spike Precision	10	10		< 20%
			Duplicate Analysis	10	10	NA	@ <u>></u> 10 X MDL < 20%
			CRM Analysis	10	10	80-120% or certified value, whichever is greater.	
		Arsenic,	Blank	10	10	<3X MDL	N/A
		Beryllium,	Blank Spike	10	10	90-110	N/A
		Cadmium, Chromium.	Matrix Spike	10	10	70-130	
Summer	HMSED091110-1	Copper,	Matrix Spike Dup	10	10	70-130	
Samilo		Lead, Nickel,	Matrix Spike Precision	10	10		< 20%
		Selenium,	Duplicate Analysis	10	10	NA	@ <u>></u> 10 X MDL < 20%
		Silver, Zinc	CRM Analysis	10	10	80-120% or certified value, whichever is greater.	

Orange County Sanitation District, California.

Table C-12 Continued.

Quarter	Sample Set	Parameter	Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD
			Blank	2	2	<3X MDL	N/A
Summer	ALFESED090826-1	Aluminum,	Duplicate Analysis	2	2	NA	@ <u>></u> 10 X MDL < 20%
-		Iron	CRM Analysis	2	2	80-120% or certified value, whichever is greater.	
			Blank	2	2	<3X MDL	N/A
Summer	ALFESED090930-1	Aluminum,	Duplicate Analysis	2	2	NA	@ <u>></u> 10 X MDL < 20%
Cuminor		Iron	CRM Analysis	2	2	80-120% or certified value, whichever is greater.	
			Blank	2	2	<3X MDL	N/A
Summer	ALFESED091029-1	Aluminum, Iron	Duplicate Analysis	2	2	NA	@ <u>></u> 10 X MDL < 20%
Gummer			CRM Analysis	2	2	80-120% or certified value, whichever is greater.	
Summer			Blank	2	2	<3X MDL	N/A
	ALFESED091113-1	Aluminum, Iron	Duplicate Analysis	2	2	NA	@ <u>></u> 10 X MDL < 20%
			CRM Analysis	2	2	80-120% or certified value, whichever is greater.	
			Blank	1	1	<2X MDL	N/A
			Blank Spike	1	1	90-110	N/A
			Matrix Spike	4	4	70-130	
Summer	HGSED091123-1	Mercury	Matrix Spike Dup	4	4	70-130	
Camille		Morodry	Matrix Spike Precision	4	4		< 25%
			Duplicate Analysis	4	* 2	NA	@ <u>></u> 10 X MDL < 30%
			CRM Analysis	1	1	80-120% or certified value, whichever is greater.	

NA = Not applicable

Table C-12 Continued.

Quarter	Sample Set	Parameter	Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD
			Blank	1	1	<2X MDL	N/A
			Blank Spike	1	1	90-110	N/A
			Matrix Spike	4	4	70-130	
Summer	HGSED091202-1	Mercury	Matrix Spike Dup	4	4	70-130	
And Fall*		morodry	Matrix Spike Precision	4	4		< 25%
			Duplicate Analysis	4	4	NA	@ <u>></u> 10 X MDL < 30%
			CRM Analysis	1	1	80-120% or certified value, whichever is greater.	
Fall		Arsenic, Beryllium, Cadmium, Chromium,	Blank	10	10	<3X MDL	N/A
			Blank Spike	10	10	90-110	N/A
			Matrix Spike	10	10	70-130	
	HMSED091110-1	Copper,	Matrix Spike Dup	10	10	70-130	
		Lead, Nickel,	Matrix Spike Precision	10	10		< 20%
		Selenium,	Duplicate Analysis	10	10	NA	@ <u>></u> 10 X MDL < 20%
		Silver, Zinc	CRM Analysis	10	10	80-120% or certified value, whichever is greater.	
			Blank	2	2	<3X MDL	N/A
Fall	ALFESED091113-1	Aluminum,	Duplicate Analysis	2	2	NA	@ <u>></u> 10 X MDL < 20%
i un		Iron	CRM Analysis	2	2	80-120% or certified value, whichever is greater	

NA = Not applicable.

Table C-12 Continued.

Quarter	Sample Set	Parameter	Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD
		Arsenic,	Blank	10	10	<3X MDL	N/A
		Beryllium,	Blank Spike	10	10	90-110	N/A
		Cadmium, Chromium,	Matrix Spike	10	10	70-130	
Winter	HMSED100310-1	Copper,	Matrix Spike Dup	10	10	70-130	
WIIILEI	TIMBLET00310-1	Lead,	Matrix Spike Precision	10	10		< 20%
		Nickel, Selenium.	Duplicate Analysis	10	10	NA	@ <u>></u> 10 X MDL < 20%
		Silver, Zinc	CRM Analysis	10	10	80-120% or certified value, whichever is greater.	
	ALFESED100311-1	Aluminum, Iron	Blank	2	2	<3X MDL	N/A
Winter			Duplicate Analysis	2	2	NA	@ <u>></u> 10 X MDL < 20%
Winter			CRM Analysis	2	2	80-120% or certified value, whichever is greater	
Winter			Blank	1	1	<2X MDL	N/A
			Blank Spike	1	1	90-110	N/A
			Matrix Spike	1	1	70-130	
	HGSED100309-1	Mercury	Matrix Spike Dup	1	1	70-130	
	100201000001	Meredry	Matrix Spike Precision	1	1		< 25%
			Duplicate Analysis	1	1	NA	@ <u>></u> 10 X MDL < 30%
			CRM Analysis	1	1	80-120% or certified value, whichever is greater.	

NA = Not applicable

Table C-12 Continu	led.
--------------------	------

Quarter	Sample Set	Parameter	Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD	
		Arsenic,	Blank	10	10	<3X MDL	N/A	
		Beryllium,	Blank Spike	10	10	90-110	N/A	
		Cadmium, Chromium,	Matrix Spike	10	10	70-130		
Spring	HMSED100609-1	Copper,	Matrix Spike Dup	10	10	70-130		
opning		Lead, Nickel,	Matrix Spike Precision	10	10		< 20%	
		Selenium,	Duplicate Analysis	10	10	NA	@ <u>></u> 10 X MDL < 20%	
		Silver, Zinc	CRM Analysis	10	10	80-120% or certified value, whichever is greater.		
	ALFESED100610-2	Aluminum, Iron		Blank	2	2	<3X MDL	N/A
Spring			Duplicate Analysis	2	2	NA	@ <u>></u> 10 X MDL < 20%	
oping			CRM Analysis	2	2	80-120% or certified value, whichever is greater.		
Spring			Blank	1	1	<3X MDL	N/A	
		D100607-1 Mercury	Blank Spike	1	1	90-110	N/A	
			Matrix Spike	1	1	70-130		
	HGSED100607-1		Matrix Spike Dup	1	1	70-130		
			Matrix Spike Precision	1	1		< 25%	
			Duplicate Analysis	1	* 0	NA	@ <u>></u> 10 X MDL < 30%	
			CRM Analysis	1	1	80-120% or certified value, whichever is greater.		

NA = Not applicable.

samples cooled again, sodium chloride-hydroxylamine hydrochloride solution was added to each sample and the samples were brought to 100 mL volume. The same procedure was used to prepare the calibration standards. The samples were analyzed for mercury on a Perkin Elmer FIMS 400 system.

The MDL for sediment mercury is presented in Table C-10. Acceptance criteria for mercury SRM is presented in Table C-11. All QA/QC summary data are presented in Table C-12.

All samples, with two noted exceptions, met the QA/QC criteria guidelines for accuracy and precision. Two duplicate RPDs were out of range due to low results and non-homogeneous sample matrices.

Analytical Methods - Dissolved Sulfides

Dissolved sulfides samples were analyzed in accordance with methods described in the ELOM LOPM (OCSD 2009). The MDL for dissolved sulfides is presented in Table C-13. Sediment dissolved sulfides QA/QC summary data are presented in Table C-14. All samples were analyzed within their required holding times. All analyses met the QA/QC criteria for blanks, blank spikes, matrix spikes, and matrix spike precisions. One of seven matrix spike duplicate recoveries was out of control due to matrix interferences.

Analytical Methods - Total Organic Carbon

Total Organic Carbon (TOC) samples were analyzed by a contract laboratory: Columbia Analytical Services, Kelso, WA. The MDL for TOC is presented in Table C-13. Sediment TOC QA/QC summary data are presented in Table C-15. The samples were analyzed within their required holding times. Two samples were analyzed in duplicate. The samples and their duplicate analyses had an RPD of less than 10%. The recoveries for matrix spike were within 80–120% range.

Analytical Methods - Grain Size

Grain size samples were analyzed by a contract laboratory, Weston Solutions, Carlsbad, CA. The MDL for sediment grain size is presented in Table C-13. Sediment grain size QA/QC summary data are presented in Table C-16. Ten reference samples were analyzed. All analyses were within 3 standard deviations of the reference standard for the statistical parameters (median phi, dispersion, and skewness), percent gravel, percent sand, percent clay, and percent silt.

SECOND QUARTER (OCTOBER 2009)

OCSD's ELOM laboratory received 10 sediment samples from the ocean monitoring staff during the month of October 2009. All samples were stored according to methods described in the ELOM LOPM (OCSD 2009). All samples were analyzed for organochlorine pesticides, PCB congeners, PAHs, trace metals, mercury, dissolved sulfides, grain size, and TOC.

All sediment samples that were analyzed for organochlorine pesticides and PCB congeners were extracted on November 18, 2009. All sediment samples that were analyzed for PAHs were extracted on October 6, 2009. Any variances that occurred during sample processing or analysis are noted in the Comments/Notes section of each batch summary. All sediment

Table C-13.Method detection limits for dissolved sulfides, total organic carbon, and grain size in
sediments, July 2009–June 2010.

Parameter	Detection Limits
Dissolved Sulfides (OCSD)	1.03 mg/kg dry weight
Total Organic Carbon (Columbia Analytical Services)	0.05%
Grain Size (Weston Solutions, Inc.)	0.001 %

Table C-14. Sediment dissolved sulfides QA/QC summary, July 2009–June 2010.

Quarter	Sample Set	Parameter	Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD
	SULFIDE090709-1		Method Blank	7	7	<2X MDL	N/A
	SULFIDE090714-1 SULFIDE090715-1		Blank Spike	7	7	80 -120	N/A
Summer	SULFIDE090716-1	Dissolved Sulfides	Matrix Spike	7	7	70 - 130	
	SULFIDE090722-1 SULFIDE090729-1		Matrix Spike Dup	7	6 *	70 - 130	
	SULFIDE090804-1		Matrix Spike Precision	7	7		<30%
			Method Blank	1	1	<2X MDL	N/A
			Blank Spike	1	1	80 -120	N/A
Fall	SULFIDE091013-1	Dissolved Sulfides	Matrix Spike	1	1	70 - 130	
			Matrix Spike Dup	1	1	70 - 130	
			Matrix Spike Precision	1	1		<30%
			Method Blank	1	1	<2X MDL	N/A
			Blank Spike	1	1	80 -120	N/A
Winter	SULFIDE100114-2	Dissolved Sulfides	Matrix Spike	1	1	70 - 130	
			Matrix Spike Dup	1	1	70 - 130	
			Matrix Spike Precision	1	1		<30%
			Method Blank	1	1	<2X MDL	N/A
			Blank Spike	1	1	80 -120	N/A
Spring	SULFIDE100427-1	Dissolved Sulfides	Matrix Spike	1	1	70 - 130	
			Matrix Spike Dup	1	1	70 - 130	
			Matrix Spike Precision	1	1		<30%

Table C-15. Sediment total organic carbon QA/QC summary, July 2009–June 2010.

Orange County Sanitation District, California.

Quarter	Sample Set	Parameter	Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD
Summer	TOC-090917-1	Total Organic Carbon	Duplicate Analysis:	5	5	80-120 ¹	10% ¹
Fall	TOC-100107-1	Total Organic Carbon	Duplicate Analysis:	1	1	80-120 ¹	10% ¹
Winter	TOC-100204-1	Total Organic Carbon	Duplicate Analysis:	1	1	80-120 ¹	10% ¹
Spring	TOC-100607-1	Total Organic Carbon	Duplicate Analysis:	1	1	80-120 ¹	10% ¹
¹ TOC Target	Precision/Accuracy	of QC Criteria is not descr	ibed in the Core Monitori	ng Quality Assurance Pro	ject Plan.		

Table C-16. Sediment grain size QA/QC summary, July 2009–June 2010.

Quarter	Sample Set	Parameter	Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD
Summer	PSIZ-091015-1	Grain Size	Reference Standard	10	7	NA	Mean ± 3 σ of the reference standard for median phi, skewness, % dispersion, % gravel, % sand, % clay, and % silt
Fall	PSIZ-091209-1	Grain Size	Reference Standard	2	1	NA	Mean ± 3 σ of the reference standard for median phi, skewness, % dispersion, % gravel, % sand, % clay, and % silt
Winter	PSIZ-100310-1	Grain Size	Reference Standard	2	1	NA	Mean \pm 3 σ of the reference standard for median phi, skewness, % dispersion, % gravel, % sand, % clay, and % silt
Spring	PSIZ-100609-1	Grain Size	Reference Standard	2	1	NA	Mean ± 3 σ of the reference standard for median phi, skewness, % dispersion, % gravel, % sand, % clay, and % silt

samples were extracted using an ASE. All sediment extracts for PCB congeners and pesticides were analyzed by GC/MS.

All samples were analyzed for metals within their holding times. All of the metals analyses met the QA criteria guidelines. Sediment metals QA/QC summary data are presented in Table C-12. All spike recoveries ranged from 90.7% and 103.0%. The RPDs of the sample and its duplicate were less than or equal to 5.4%. The RPDs of the spike and spike duplicate ranged from -0.7% to 1.5%.

Sediment Mercury QA/QC summary data are presented in Table C-12. All samples met the QA criteria guidelines.

The analyses for dissolved sulfides, TOC, and grain size met criteria guidelines as specified in the project QAPP. MDL, SRM, and QA/QC summary data are presented in Tables C-13 through C-16.

THIRD QUARTER (JANUARY 2010)

OCSD's ELOM laboratory received 10 sediment samples from the ocean monitoring staff during the month of January 2010. All samples were stored according to methods described in the ELOM LOPM (OCSD 2009). All samples were analyzed for organochlorine pesticides, PCB congeners, PAHs, trace metals, mercury, dissolved sulfides, grain size, and TOC.

All sediment samples that were analyzed for organochlorine pesticides and PCB congeners were extracted on January 27, 2010. All sediment samples that were analyzed for PAHs were extracted on February 9, 2010. Any variances are noted in the Comments/Notes section of each batch summary. All sediment samples were extracted using an ASE. All sediment extracts for PCB congeners and pesticides were analyzed by GC/MS.

All samples were analyzed for metals within their holding times. Sediment metals QA/QC summary data are presented in Table C-12. All spike recoveries ranged from 87.0% to 106.8%. The RPDs of the sample and its duplicate ranged from -8.9% to 6.3%. The RPDs of the spike and spike duplicate ranged from -2.3% to 0.2%.

Sediment mercury QA/QC summary data are presented in Table C-12. All samples met the QA criteria guidelines.

The analyses for dissolved sulfides, TOC, and grain size met criteria guidelines as specified in the project QAPP. MDL, SRM, and QA/QC summary data are presented in Tables C-13 through C-16.

FOURTH QUARTER (APRIL 2010)

OCSD's ELOM laboratory received 10 sediment samples from the ocean monitoring staff during the month of April 2010. All samples were stored according to ELOM's LOPM (OCSD 2009). All samples were analyzed for organochlorine pesticides, PCB congeners, PAHs, trace metals, mercury, dissolved sulfides, grain size, and TOC.

All sediment samples being analyzed for organochlorine pesticides and PCB congeners were extracted on May 12, 2010. All sediment samples being analyzed for PAHs were extracted on June 9, 2010. Any variances, which may have occurred during sample processing or analysis, are noted in the Comments/Notes section of each batch summary. All sediment samples were extracted using an ASE. All sediment extracts for PCB congeners and pesticides were analyzed by Ion Trap GC/MS.

All samples were analyzed for metals within their holding times. All metal analyses met the QA objectives. Sediment metals QA/QC summary data are presented in Table C-12. All spike recoveries were between 85.3% and 122.5%. The RPDs of the sample and its duplicate ranged from -10.1% to 8.2%. The RPDs of the spike and spike duplicate ranged from -3.5% to 13.0%.

Sediment mercury QA/QC summary data are presented in Table C-12. All samples met the QA criteria guidelines with one exception. One duplicate RPD was slightly out of range due to low results and a non-homogeneous sample matrix.

The analyses for dissolved sulfide, TOC, and grain size met the QA criteria guidelines specified in the QAPP. MDL, SRM, and QA/QC summary data are presented in Tables C-13 through C-16.

FISH TISSUE CHEMISTRY NARRATIVE

FIRST QUARTER (JULY 2009)

Introduction

OCSD's ELOM laboratory received 40 individual fish samples and 20 composite samples (containing 6 fish per bag), from the ocean monitoring staff during the month of July 2009. The individual samples were stored, dissected, and homogenized according to methods described in the OCSD ELOM LOPM (OCSD 2009). A 1:1 muscle to water ratio was used. No water was used during liver homogenization. After the individual samples were homogenized, equal aliquots of muscle and liver from each sample were frozen and distributed to the inorganic and organic chemistry rooms for analyses. Each of the 20 composites were weighed and homogenized using a 1:1 whole-body fish to water ratio, according to methods described in the ELOM LOPM. After the composites were homogenized, equal aliquots were frozen and distributed to the inorganic swere frozen and distributed to the and homogenized using a 1:1 whole-body fish to water ratio, according to methods described in the ELOM LOPM. After the composites were homogenized, equal aliquots were frozen and distributed to the inorganic swere frozen and distributed to the inorganic and organic chemistry rooms for analyses.

The Organic Chemistry Section extracted 40 fish muscle samples, 40 fish liver samples, and 20 whole-body composite samples and analyzed them for PCB congeners and organochlorine pesticides. Percent lipid content was also determined for each sample.

A typical organic tissue sample batch included 15 field samples with required QC samples. The QC samples included 1 hydromatrix blank, 2 duplicate sample extractions, 1 matrix spike, 1 matrix duplicate spike, 2 SRMs, and 1 reporting level spike (matrix of choice was orange roughy).

For mercury analysis, 1 sample batch consisted of 15–20 fish tissue samples and the required QC samples, which included a blank, blank spike, SRM, sample duplicates, matrix spikes, and matrix spikes duplicates.

Analytical Methods - Organochlorine Pesticides and PCB Congeners

The analytical methods used for organochlorine pesticides and PCB congeners were according to methods described in the ELOM LOPM (OCSDS 2009). All fish tissue was extracted using an ASE 200 and analyzed by GC/MS.

The MDLs for pesticides and PCBs in fish tissue are presented in Tables C-17 and C-18. Acceptance criteria for PCB SRMs in fish tissue are presented in Tables C-19 and C-20. Fish tissue pesticide and PCB QA/QC summary data are presented in Table C-21. All analyses were performed within the required holding times and with appropriate quality control measures. In cases where constituent concentrations exceeded the calibration range of the instrument, the samples were diluted and reanalyzed. Any variances that occurred during sample preparation or analyses are noted in the Comments/Notes section of each batch summary.

Analytical Methods – Lipid Content

Percent lipid content was determined for each sample of fish using methods described in the ELOM LOPM (OCSD 2009). Lipids were extracted by dichloromethane from approximately 1 to 2 g of sample and concentrated to 2 mL. A 100 uL aliquot of the extract was placed in a tarred aluminum weighing boat and the solvent allowed to evaporate to

Table C-17.Method detection levels for pesticides and PCB congeners in fish tissue using GC/MSIon Trap, July 2009–June 2010

Parameters	Method Detection Limit ng/g wet weight	Parameters	Method Detection Limit ng/g wet weight
	Pest	cides	
o,p'-DDD	0.90	Dieldrin	1.0
o,p'-DDE	0.80	Endrin	1.4
o,p'-DDT	0.68	gamma-BHC	0.72
p,p'-DDD	1.2	gamma-Chlordane	0.78
p,p'-DDE	0.92	Heptachlor	0.71
p,p'-DDT	0.85	Heptachlor epoxide	0.72
p,p'-DDMU	0.50	Hexachlorobenzene	0.83
Aldrin	0.67	Mirex	0.63
alpha-Chlordane	0.75	trans-Nonachlor	0.83
cis-Nonachlor	0.70		
	PCB Co	ngeners	
PCB 8	0.86	PCB 128	0.65
PCB 18	0.54	PCB 138	0.86
PCB 28	0.70	PCB 149	1.1
PCB 37	0.66	PCB 151	0.61
PCB 44	0.68	PCB 156	1.0
PCB 49	0.87	PCB 157	1.2
PCB 52	0.73	PCB 158	1.2
PCB 66	0.65	PCB 167	1.3
PCB 70	1.2	PCB 168/153	2.6
PCB 74	1.1	PCB 169	1.5
PCB 77	1.3	PCB 170	1.3
PCB 81	0.83	PCB 177	1.2
PCB 87	0.87	PCB 180	0.64
PCB 99	0.90	PCB 183	0.88
PCB 101	0.84	PCB 187	1.1
PCB 105	1.1	PCB 189	1.3
PCB 110	0.84	PCB 194	0.97
PCB 114	0.59	PCB 195	0.77
PCB 118	1.1	PCB 200	1.2
PCB 119	0.84	PCB 201	0.91
PCB 123	1.1	PCB 206	1.1
PCB 126	1.1	PCB 209	1.2

Table C-18. Method detection levels for pesticides and PCB congeners in fish tissue using GC/MS DSQII, July 2009–June 2010

Parameters	Method Detection Limit ng/g wet weight	Parameters	Method Detection Limit ng/g wet weight
	Pest	cides	
o,p'-DDD	0.33	Dieldrin	0.31
o,p'-DDE	0.23	Endrin	0.64
o,p'-DDT	0.33	gamma-BHC	0.21
p,p'-DDD	0.16	gamma-Chlordane	0.25
p,p'-DDE	0.31	Heptachlor	0.23
p,p'-DDT	0.24	Heptachlor epoxide	0.37
p,p'-DDMU	0.43	Hexachlorobenzene	0.32
Aldrin	0.30	Mirex	0.29
alpha-Chlordane	0.33	trans-Nonachlor	0.21
cis-Nonachlor	0.19		
	PCB Co	ngeners	
PCB 8	0.24	PCB 128	0.08
PCB 18	0.24	PCB 138	0.16
PCB 28	0.21	PCB 149	0.33
PCB 37	0.27	PCB 151	0.22
PCB 44	0.36	PCB 156	0.10
PCB 49	0.17	PCB 157	0.10
PCB 52	0.17	PCB 158	0.18
PCB 66	0.26	PCB 167	0.09
PCB 70	0.23	PCB 168/153	0.23
PCB 74	0.24	PCB 169	0.15
PCB 77	0.21	PCB 170	0.18
PCB 81	0.19	PCB 177	0.09
PCB 87	0.17	PCB 180	0.18
PCB 99	0.44	PCB 183	0.13
PCB 101	0.14	PCB 187	0.06
PCB 105	0.13	PCB 189	0.12
PCB 110	0.19	PCB 194	0.17
PCB 114	0.10	PCB 195	0.13
PCB 118	0.22	PCB 200	0.08
PCB 119	0.14	PCB 201	0.20
PCB 123	0.21	PCB 206	0.11
PCB 126	0.11	PCB 209	0.29

Table C-19. Acceptance criteria for standard reference materials of PCB congeners in fish tissue, CARP-2, July 2009–June 2010.

CARP-2, Ground Whole Carp Reference Material for Organochlorine Compounds, National Research Council Canada.

Parameter	True Value (ng/g)		ice Range g/g)
	(119/9)	Minimum	Maximum
PCB 18	27.3	23.3	31.3
PCB 28	34.0	26.8	41.2
PCB 52	138	95.0	181
PCB 44	86.6	60.7	112
PCB 118	148	115	181
PCB 153	105	83.0	127
PCB 128	20.4	16.0	24.8
PCB 180	53.3	40.3	66.3
PCB 194	10.9	7.80	14.0
PCB 206	4.40	3.30	5.50

Orange County Sanitation District, California.

Table C-20. Acceptance criteria for standard reference materials of pesticides and PCB congeners in fish tissue, SRM-1946, July 2009–June 2010.

SRM 1946, Organics in Lake Superior Fish Tissue, National Institute of Standards and Technology.

Parameter	True Value (ng/g)	Acceptance Range (ng/g)		Parameter	True Value	Acceptance Range (ng/g)	
	(19/9)	Minimum	Maximum		(ng/g)	Minimum	Maximum
gamma-BHC	1.14	0.96	1.32	PCB 99	25.6	23.3	27.9
Dieldrin	32.5	29.0	36.0	PCB 101	34.6	32.0	37.2
Heptachlor epoxide	5.50	5.27	5.73	PCB 105	19.9	19.0	20.8
Hexachlorobenzene	7.25	6.42	8.08	PCB 110	22.8	20.8	24.8
alpha-Chlordane	32.5	30.7	34.3	PCB 118	52.1	51.1	53.1
gamma-Chlordane	8.36	7.45	9.27	PCB 126	0.380	0.363	0.397
cis-Nonachlor	59.1	55.5	62.7	PCB 128	22.8	20.9	24.7
trans-Nonachlor	99.6	92.0	107	PCB 138	115	102	128
Mirex	6.47	5.70	7.24	PCB 149	26.3	25.0	27.6
o,p'-DDD	2.20	1.95	2.45	PCB 153/168	170	161	179
p,p'-DDD	17.7	14.9	20.5	PCB 156	9.52	9.01	10.0
p,p'-DDE	373	325	421	PCB 169	0.106	0.092	0.120
p,p'-DDT	37.2	33.7	40.7	PCB 170	25.2	23.0	27.4
PCB 44	4.66	3.80	5.52	PCB 180	74.4	70.4	78.4
PCB 49	3.80	3.41	4.19	PCB 183	21.9	19.4	24.4
PCB 52	8.1	7.10	9.10	PCB 187	55.2	53.1	57.3
PCB 66	10.8	8.90	12.7	PCB 194	13.0	11.7	14.3
PCB 70	14.9	14.3	15.5	PCB 195	5.30	4.85	5.75
PCB 74	4.83	4.32	5.34	PCB 206	5.40	4.97	5.83
PCB 77	0.327	0.302	0.352	PCB 209	1.30	1.09	1.51
PCB 87	9.4	8.00	10.8				

Table C-21. Fish tissue PCB/pesticide QA/QC summary, July 2009–June 2010.

CARP-2: National Research Council Canada; SRM 1946: National Institute of Standards & Technology

Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD	
\$	Sample Set – M	A (15 Muscle Tis	sue Samples)		
NRCC CARP-2	10	10	according to published acceptance criteria	NA	
SRM 1946	40	39	according to published acceptance criteria	NA	
PCB Reporting Level Spike	44	42	75 -125	NA	
PCB Matrix Spike:	44	44	70 100	NIA	
PCB Matrix Spike Dup	44	44	70 - 130	NA	
Precision	44	44	NA	< 25%	
Pesticide Reporting Level Spike	19	17	75 -125	NA	
Pesticide Matrix Spike	19	17	70.400		
Pesticide Matrix Spike Dup	19	17	70-130	NA	
Precision	19	19	NA	< 25%	
PCB/Pesticide Duplicate Analysis				·	
Duplicate 1 PCB	1	1			
Duplicate 1 Pesticides	4	3	NA	< 25% @ 3 x MDL of Sample Mean.	
Duplicate 1 Sum of Pesticides and PCBs	1	1			
Duplicate 2 PCB	4	2			
Duplicate 2 Pesticides	3	2	NA	< 25% @ 3 x MDL of Sample Mean.	
Duplicate 2 Sum of Pesticides and PCBs	1	1		Sample Mean.	
Si	ample Set – MB	(15 Muscle Ti	issue Samples)		
			according to published		
NRCC CARP-2	10	10	acceptance criteria	NA	
SRM 1946	40	40	according to published acceptance criteria		
PCB Reporting Level Spike	44	44	75 -125	NA	
PCB Matrix Spike:	44	43	70 100	NIA	
PCB Matrix Spike Dup	44	43	70 - 130	NA	
Precision	44	40	NA	< 25%	
Pesticide Reporting Level Spike	19	19	75 -125	NA	
Pesticide Matrix Spike	19	18	70-130	NIA	
Pesticide Matrix Spike Dup	19	18	70-130	NA	
Precision	19	17	NA	< 25%	
PCB/Pesticide Duplicate Analysis					
Duplicate 1 PCB	0	0			
Duplicate 1 Pesticides	1	0	NA	< 25% @ 3 x MDL of Sample Mean.	
Duplicate 1 Sum of Pesticides and PCBs	1	0		Sample Mean.	
Duplicate 2 PCB	0	0		_	
Duplicate 2 Pesticides	1	0	NA NA	< 25% @ 3 x MDL of Sample Mean.	
Duplicate 2 Sum of Pesticides and PCBs	1	0			

Orange County Sanitation District, California.

Table C-21 Continues.

Table C-21 Continued.

Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD	
Sample Set –	MC (10 Muscle	Tissue and 5 Wi	hole Body Tissue Samples)		
NRCC CARP-2	10	10	according to published acceptance criteria	NA	
SRM 1946	40	38	according to published acceptance criteria		
PCB Reporting Level Spike	44	42	75 -125	NA	
PCB Matrix Spike:	44	43	70 400	NA	
PCB Matrix Spike Dup	44	40	70 - 130	NA	
Precision	44	43	NA	< 25%	
Pesticide Reporting Level Spike	19	19	75 -125	NA	
Pesticide Matrix Spike	19	18	70.400	NIA	
Pesticide Matrix Spike Dup	19	17	70-130	NA	
Precision	19	18	NA	< 25%	
PCB/Pesticide Duplicate Analysis					
Duplicate 1 PCB	4	3			
Duplicate 1 Pesticides	3	2	NA	< 25% @ 3 x MDL of Sample Mean.	
Duplicate 1 Sum of Pesticides and PCBs	1	1		Sample Mean.	
Duplicate 2 PCB	4	4			
Duplicate 2 Pesticides	2	2	NA	< 25% @ 3 x MDL of Sample Mean.	
Duplicate 2 Sum of Pesticides and PCBs	1	1		Sample Mean.	
Sample Set – MD	(1 Muscle Tissu	ue repeat and 10) Whole Body Tissue Sample	es)	
NRCC CARP-2	10	10	according to published acceptance criteria	NA	
SRM 1946	40	40	according to published acceptance criteria		
PCB Reporting Level Spike	44	44	75 -125	NA	
PCB Matrix Spike:	44	42	70 - 130	NA	
PCB Matrix Spike Dup	44	41	70 - 130	INA	
Precision	44	44	NA	< 25%	
Pesticide Reporting Level Spike	19	19	75 -125	NA	
Pesticide Matrix Spike	19	18	70-130	NA	
Pesticide Matrix Spike Dup	19	18	70-130		
Precision	19	19	NA	< 25%	
PCB/Pesticide Duplicate Analysis					
Duplicate 1 PCB	1	1			
Duplicate 1 Pesticides	2	2	NA	< 25% @ 3 x MDL of Sample Mean.	
Duplicate 1 Sum of Pesticides and PCBs	1	1		Campio Mouri.	

Table C-21 Continues.

Table C-21 Continued.

Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD	
	Sample Set – L	A (15 Liver Tiss	ue Samples)		
NRCC CARP-2	10	10	according to published acceptance criteria	NA	
SRM 1946 *	40	38	according to published acceptance criteria		
PCB Reporting Level Spike	44	37	75 -125	NA	
PCB Matrix Spike:	44	41	70 - 130	NA	
PCB Matrix Spike Dup	44	44	70-150		
Precision	44	35	NA	< 25%	
Pesticide Reporting Level Spike	19	14	75 -125	NA	
Pesticide Matrix Spike	19	18	70-130	NA	
Pesticide Matrix Spike Dup	19	19	76-130		
Precision	19	14	NA	< 25%	
PCB/Pesticide Duplicate Analysis					
Duplicate 1 PCB	13	13			
Duplicate 1 Pesticides	4	4	NA	< 25% @ 3 x MDL of Sample Mean.	
Duplicate 1 Sum of Pesticides and PCBs	1	1		•	
Duplicate 2 PCB	10	9			
Duplicate 2 Pesticides	3	2	NA	< 25% @ 3 x MDL of Sample Mean.	
Duplicate 2 Sum of Pesticides and PCBs	1	1			
	Sample Set – L	.B (15 Liver Tiss	ue Samples)		
NRCC CARP-2	10	10	according to published acceptance criteria	NA	
SRM 1946	40	40	according to published acceptance criteria		
PCB Reporting Level Spike	44	43	75 -125	NA	
PCB Matrix Spike:	44	43	70 - 130	NA	
PCB Matrix Spike Dup	44	44	70 - 130	NA	
Precision	44	44	NA	< 25%	
Pesticide Reporting Level Spike	19	18	75 -125	NA	
Pesticide Matrix Spike	19	19	70-130	NA	
Pesticide Matrix Spike Dup	19	19	76-130		
Precision	19	16	NA	< 25%	
PCB/Pesticide Duplicate Analysis					
Duplicate 1 PCB	13	9			
Duplicate 1 Pesticides	3	2	NA	< 25% @ 3 x MDL of Sample Mean.	
Duplicate 1 Sum of Pesticides and PCBs	1	0			
Duplicate 2 PCB	7	6			
Duplicate 2 Pesticides	4	4	NA	< 25% @ 3 x MDL of Sample Mean.	
Duplicate 2 Sum of Pesticides and PCBs	1	1			

Table C-21 Continues.

Table C-21 Continued.

Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD	
	Sample Set – L	C (10 Liver Tiss	sue Samples)		
NRCC CARP-2	10	10	according to published acceptance criteria	NA	
SRM 1946	40	27	according to published acceptance criteria		
PCB Reporting Level Spike	44	44	75 -125	NA	
PCB Matrix Spike:	44	44	70 - 130	NA	
PCB Matrix Spike Dup	44	44	70 - 130	INA	
Precision	44	44	NA	< 25%	
Pesticide Reporting Level Spike	19	19	75 -125	NA	
Pesticide Matrix Spike	19	19	70.400	NIA	
Pesticide Matrix Spike Dup	19	19	70-130	NA	
Precision	19	19	NA	< 25%	
PCB/Pesticide Duplicate Analysis					
Duplicate 1 PCB	6	4			
Duplicate 1 Pesticides	3	3	NA	< 25% @ 3 x MDL of Sample Mean.	
Duplicate 1 Sum of Pesticides and PCBs	1	1		Campio Moun.	
Duplicate 2 PCB	4	3			
Duplicate 2 Pesticides	3	1	NA	< 25% @ 3 x MDL of Sample Mean.	
Duplicate 2 Sum of Pesticides and PCBs	1	1		Cumpic Moun.	

dryness. The remaining residue was weighed, and the percent lipid content calculated. Lipid content QA/QC summary data are presented in Table C-22. All analyses were performed within the required holding times and with appropriate quality control measures. Any variances that occurred during sample preparation or analyses are noted in the Comments/Notes section of the Fish Tissue Percent QA/QC Summary.

Analytical Methods - Mercury

Fish tissue samples were analyzed for mercury in accordance with ELOM SOP 245.1A. Typical QC analyses for a tissue sample batch included a blank, a blank spike, and SRMs (liver and muscle). In the same batch, additional QC samples included duplicate analyses of the sample, spiked samples and duplicate spiked samples, which were run approximately once every 10 samples.

The MDL for fish mercury is presented in Table C-23. Acceptance criteria for the mercury SRMs are presented in Table C-24. Fish tissue mercury QA/QC summary data are presented in Table C-25. All samples were analyzed within their 6-month holding times and met the QA criteria guidelines.

Pretreated (resected and 1:1 Muscle: water homogenized) fish samples were analyzed for mercury in accordance with methods described in the ELOM LOPM (OCSD 2009). QC for a typical batch included a blank, a blank spike, and a SRM (whole fish). Fish samples with duplicates, spiked samples and duplicate spiked samples were run approximately once every 10 fish samples. When sample mercury concentration exceeded the appropriate calibration curve, the sample was diluted with the reagent blank and reanalyzed. The samples were analyzed for mercury on a Perkin Elmer FIMS 400 system.

All samples met the QA criteria guidelines for accuracy and precision with one exception. One sample duplicate RPD was slightly out of its acceptable range due to low results and a non-homogeneous sample.

Table C-22.Fish tissue percent lipid QA/QC summary, July 2009–June 2010.

Sample Set	Tissue Type	Parameter	Description	Number of Compounds Tested	Number of Compounds Passed	Target Precision % RPD
MA	Muscle	Percent Lipid	Duplicate Samples	2	2	<25%
MB	Muscle	Percent Lipid	Duplicate Samples	2	2	<25%
MC	Muscle	Percent Lipid	Duplicate Samples	2	2	<25%
MD	Whole Body	Percent Lipid	Duplicate Samples	2	2	<25%
LA	Liver	Percent Lipid	Duplicate Samples	2	2	<25%
LB	Liver	Percent Lipid	Duplicate Samples	2	2	<25%
LC	Liver	Percent Lipid	Duplicate Samples	2	2	<25%

Orange County Sanitation District, California.

Table C-23. Method detection levels for mercury in fish tissue, July 2009–June 2010.

Orange County Sanitation District, California.

Parameter	Method Detection Limit (ng/g wet weight)
Mercury	0.002

Table C-24.Acceptance criteria for standard reference materials of mercury in fish tissue, July
2009–June 2010.

Dogfish Muscle and Liver Reference Material for Mercury, National Research Council Canada.

 Mercury
 True Value (ng/g)
 Acceptance Range (ng/g)

 Minimum
 Maximum

 DORM-2
 4.64
 4.38
 4.90

 DORM-3
 0.382
 0.322
 0.442

Table C-25. Fish tissue mercury QA/QC summary, July 2009–June 2010.

Orange County Sanitation District, California.

Sample Set	Parameter	Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD
		Blank	1	1	<2X MDL	NA
		Blank Spike	1	1	90-110	NA
		Matrix Spike	2	2	70-130	
HGFISH090922-2	Mercury	Matrix Spike Dup	2	2	70-130	
	Morodry	Matrix Spike Precision	2	2		< 25%
		Duplicate Analysis	2	2	NA	@ <u>></u> 10 X MDL < 30%
		CRM Analysis	1	1	80-120% or certified value, whichever is greater.	
HGFISH090930-2	IGFISH090930-2	Blank	1	1	<2X MDL	NA
		Blank Spike	1	1	90-110	NA
		Matrix Spike	2	2	70-130	
	Mercury	Matrix Spike Dup	2	2	70-130	
		Matrix Spike Precision	2	2		< 25%
		Duplicate Analysis	2	1	NA	@ <u>></u> 10 X MDL < 30%
		CRM Analysis	1	1	80-120% or certified value, whichever is greater.	
		Blank	1	1	<2X MDL	NA
		Blank Spike	1	1	90-110	NA
		Matrix Spike	2	2	70-130	
HGFISH091007-2	Mercury	Matrix Spike Dup	2	2	70-130	
		Matrix Spike Precision	2	2		< 25%
		Duplicate Analysis	2	2	NA	@ <u>></u> 10 X MDL < 30%
		CRM Analysis	1	1	80-120% or certified value, whichever is greater.	

Table C-25 Continues.

Table C-25 Continued.

Sample Set	Parameter	Description	Number of Compounds Tested	Number of Compounds Passed	Target Accuracy % Recovery	Target Precision % RPD
		Blank	1	1	<2X MDL	NA
		Blank Spike	1	1	90-110	NA
		Matrix Spike	2	2	70-130	
HGFISH091027-1	Mercury	Matrix Spike Dup	2	2	70-130	
	moroary	Matrix Spike Precision	2	2		< 25%
		Duplicate Analysis	2	2	NA	@ <u>></u> 10 X MDL < 30%
		CRM Analysis	1	1	80-120% or certified value, whichever is greater.	
		Blank	1	1	<2X MDL	NA
		Blank Spike	1	1	90-110	NA
		Matrix Spike	2	2	70-130	
HGFISH091104-1	Mercury	Matrix Spike Dup	2	2	70-130	
	moroary	Matrix Spike Precision	2	2		< 25%
		Duplicate Analysis	2	* 1	NA	@ <u>></u> 10 X MDL < 30%
	CRM Analysis	1	1	80-120% or certified value, whichever is greater.		

BENTHIC INFAUNA NARRATIVE

SORTING AND TAXONOMY QA/QC

The QAPP for the Year 2009-10 Ocean Monitoring Program requires that infauna samples collected undergo specific sorting and taxonomic QA procedures. The following sections describe QA/QC protocols used under the program and the status of samples that have received sorting and taxonomic QA/QC. Sorting and taxonomic QA/QC procedures have been completed for 3 survey periods: the summer (July 2009, Cruise # OC-2009-025), fall (October 2009, Cruise # OC-2009-035), and winter (January 2010, Cruise # OC-2010-001) surveys.

Sorting QA/QC Procedures

OCSD's NPDES permit designates 10 quarterly (summer, fall, winter, and spring) benthicsampling stations and 39 annual (summer) benthic-sampling stations. Sorting procedures were performed on 1 replicate infaunal sample collected from each of 3 randomly selected quarterly stations in the summer, fall, and winter quarters and an additional 7 samples (at least 1 from each of the 4 major depth contour intervals) for the annual survey; no QA samples were processed for the spring survey. The sorting procedure involved removal by Weston solutions, Inc. (Weston) personnel of all biological organisms and fragments from benthic samples. Organisms were further sorted by taxa, transferred to separate vials, and total counts per station replicate were made. When all samples from a cruise passed Weston's in-house sorting efficiency criteria, they were shipped along with any remaining particulates (RPs) including sediments and shell and kelp fragments) to OCSD for reanalysis. OCSD resorted the sample RPs and collected any organisms or fragments that had been missed by Weston. The sample passed the QA procedure if the total number of animals collected by OCSD from the RPs was less than or equal to 5% of the total number of individuals collected by Weston for that sample. Discrepancies in excess of 5% of the total sample number were evaluated to resolve differences in taxonomic or specimen-condition (e.g., fragments) identifications.

2009-10 Sorting QA/QC Status

Sorting results for all 2009-10 QA samples were well within the 5% QC limit.

Taxonomic Identification QA/QC Procedures

For the summer survey, taxonomic QA/QC procedures include stratifying the stations into 5 depth groups (i.e., <60m, 60m, 100m, 200m, and >300m) and then randomly selecting 2 stations from each depth strata. For fall and winter 60-m cruises, 3 randomly selected samples are drawn from the fall and winter cruises. These samples undergo comparative taxonomic analysis by 2 independent groups of taxonomists. The selected infauna samples were identified first by Weston taxonomists, and then re-identified by taxonomists from OCSD. Weston then compared the 2 datasets and identified any discrepancies. Taxonomic discrepancies were reviewed and resolved by Weston taxonomists. Following their review, any necessary corrections to taxonomic names or numbers were made, and the project database was modified to reflect these changes.

2009-10 Taxonomic QA/QC Status

There were 433 initial discrepancies associated with taxonomic identifications for the 2009 annual cruise. However, each discrepancy was carefully reviewed, resolved, and provided with a resolution code by Weston (Table C-26).

The majority of identification differences noted for the July 2009 annual cruise were due to OCSD/Weston misidentifications (20%), QA taxonomist misidentifications (20%), convention discrepancies (15%), and QA taxonomist miscounts (10%). The remaining discrepancies were due to OCSD/Weston miscounts (9%), variation in level of expertise (7%), organism lost during biomassing (6%), organism fragments (3%), data entry error–OCSD/Weston (2%), organisms too small to speciate (2%), QA taxonomist misspelling (1%), count of a vouchered specimen (1%), NODC coding problem (1%), and OCSD/Weston taxonomist misspelling (<1%). A total of 31 discrepancies resulted in multiple coding (e.g., miscounts by both Weston and OCSD).

A total of 115 discrepancies were recorded initially for the October 2009 quarterly survey (Table C-26). The majority of identification differences noted for the quarterly cruise were due to OCSD/Weston misidentifications (22%), variations in level of expertise (22%), OCSD/Weston miscounts (14%), and convention discrepancies (12%). The remaining discrepancies were due to QA taxonomist misidentifications (5%), QA taxonomist miscounts (5%), data entry error–OCSD/Weston (3%), NODC coding problem (3%), organisms too small to speciate (3%), organism fragments (3%), keypunch operator error (3%), count of a vouchered specimen (2%), and organism lost during biomassing (2%). A total of 17 discrepancies resulted in multiple coding (e.g., miscounts by both Weston and OCSD).

A total of 73 discrepancies were recorded initially for the January 2010 quarterly survey (Table C-26). The majority of identification differences noted for the quarterly cruise were due to convention discrepancies (34%), QA taxonomist miscounts (17%), OCSD/Weston misidentifications (12%), and OCSD/Weston miscounts (12%). The remaining discrepancies were due to variations in level of expertise (7%), organism lost during biomassing (7%), data entry error–OCSD/Weston (6%), organisms too small to speciate (4%), and QA taxonomist misidentifications (1%). A total of 3 discrepancies resulted in multiple coding (e.g., miscounts by both Weston and OCSD).

Table C-26.Resolution code counts and percents for July 2009, October 2009, and January 2010
taxonomic QA data.

			Resol	utions		
Discrepancy	July	2009	Octobe	er 2009	Januai	ry 2010
	Counts	Percent	Counts	Percent	Counts	Percent
OCSD/Weston misidentification	88	20	26	22	9	12
QA Taxonomist misidentification	85	20	6	5	1	1
OCSD/Weston miscount	41	9	16	14	9	12
QA Taxonomist miscount	44	10	6	5	12	17
Data entry error (OCSD/Weston)	7	2	3	3	4	6
Data entry error (QA Taxonomist)	15	3	1	1	0	0
OCSD/Weston misspelling	1	0	0	0	0	0
QA Taxonomist misspelling	2	1	0	0	0	0
Vouchered specimen	3	1	2	2	0	0
NODC coding problem	2	1	4	3	0	0
Convention discrepancy	67	15	14	12	25	34
Variation in level of expertise	30	7	25	22	5	7
Organism too small to speciate	7	2	3	3	3	4
Organism fragment	15	3	4	3	0	0
Organism added from another vial	0	0	0	0	0	0
Dead animal not counted	0	0	0	0	0	0
Organism lost during biomassing	26	6	2	2	5	7
Keypunch operator error	0	0	3	3	0	0
Total	433	100	115	100	73	100
Multiple codes	31		17		3	

OTTER TRAWL NARRATIVE

The District's trawl sampling protocols are based upon regionally developed sampling methods (Mearns and Stubs 1974; Mearns and Allen 1978) and US Environmental Protection Agency 301(h) guidance documents (Tetra Tech 1986). These include a maximum distance from the nominal trawl station co-ordinates, sampling depth, vessel speed, and distance (trawl track) covered. Table C-27 lists the trawl quality assurance objectives (QAO).

Measure	Quality Assurance Objective (QAO)
Trawl Track Depth	±10% of nominal station depth (at any point during the trawl)
Trawl Track Length	450 m
Distance from nominal	100 m
Vessel Speed	1.5 - 2.0 knots

Table C-27. Districts quality assurance objectives for trawl sampling, July 2009–June 2010.

Orange County Sanitation District, California.

Established regional survey methods for southern California requires that a portion of the trawl track must pass within a 100-m circle that originates from the nominal sample station latitude and be within 10% of the station's depth. The speed of the trawl should range from 0.77 to 1 m/s or 1.5 to 2.0 kts. Since 1985, the District has trawled a set distance of 450 meters (the distance that the net is actually on the bottom collecting fish and invertebrates); regional surveys trawls are based on time on the bottom not distance.

Summer 2009

For summer 2009, trawl lengths ranged from 313.8 to 522.4 m with the average trawl length being 448.5 m and the average trawl speed being 2.03 kts for all trawls combined (Table C-28). All the trawls passed through the designated 100-meter circle (Figure C-1). Trawl depths and time on the bottom were determined using an attached pressure sensor that showed excellent trawl repeatability in both depth (Table C-29) and distance traveled (Figure C-2). The only anomalous station was T3, which is located on the edge of the Newport submarine canyon where depth changes rapidly (Figure 6-1). A perfectly flat trawl along an isobath is difficult to maintain at this station. While Station T3 appears not to follow the bottom depth contour, it is very likely that the net is trawling properly along an irregular bottom.

Winter 2010

For winter 2010, all trawl lengths ranged from 443.0 to 488.7 m with the average trawl length being 456.4 m and the average trawl speed being 2.03 kts for all trawls combined (Table C-30). All the trawls passed through the designated 100-meter circle (Figure C-3). Trawl depths and time on the bottom were determined using an attached pressure sensor that showed excellent trawl repeatability in both depth (Table C-31) and distance traveled (Figure C-4). Station T3 was again the only anomalous station. This station is located on the edge of the Newport submarine canyon where depth changes rapidly (Figure 6-1). A perfectly flat trawl along the isobath is difficult to maintain at this station. While Station T3 appears not to follow the bottom depth contour, it is very likely that the net is trawling properly along an irregular bottom.

Table C-28. Trawl sample dates, track distances, percent difference from target track distance, elapsed time, and vessel speed, July 2009.

Date	Station	Haul	Distance Trawled (meters)	Percent Difference from Target Distance *	Elapsed Time (seconds)	Trawl speed (knots)**
July 20, 2009	Т0	1	454.6	1.0	501	1.8
July 21, 2009	T1	1	453.7	0.8	407	2.2
July 21, 2009	T1	2	522.4	16.1	471	2.2
July 21, 2009	T1	3	460.4	2.3	424	2.1
July 29, 2009	T2	1	452.9	0.6	416	2.1
July 29, 2009	T2	2	461.1	2.5	420	2.1
July 20, 2009	Т3	1	460.5	2.3	311	2.9
July 20, 2009	Т3	2	459.7	2.2	424	2.1
July 21, 2009	Т3	3	460.3	2.3	429	2.1
July 22, 2009	Т3	4	457.4	1.7	442	2.0
July 20, 2009	T6	1	455.7	1.3	469	1.9
July 29, 2009	T6	2	453.9	0.9	429	2.1
July 22, 2009	T10	1	453.8	0.8	440	2.0
July 29, 2009	T10	2	450.4	0.1	475	1.8
July 20, 2009	T11	1	452.9	0.7	488	1.8
July 20, 2009	T11	2	454.6	1.0	476	1.9
July 20, 2009	T11	3	345.4	-23.2	481	1.4
July 30, 2009	T12	1	455.6	1.2	398	2.2
July 30, 2009	T12	2	455.8	1.3	402	2.2
July 30, 2009	T12	3	456.2	1.4	394	2.3
July 21, 2009	T13	1	449.1	-0.2	466	1.9
July 21, 2009	T13	2	452.6	0.6	500	1.8
July 30, 2009	T13	3	313.8	-30.3	276	2.2
July 29, 2009	T14	1	462.4	2.8	465	1.9
July 29, 2009	T14	2	457.6	1.7	489	1.8
	Меа	ın value	448.5	-0.3	435.7	2.03

Orange County Sanitation District, California.

Hauls with speeds less than 1.5 knots or greater than 2 knots are denoted in bold.

* Target Distance – 450 meters

** Target Speed – 1.5 – 2.0 knot

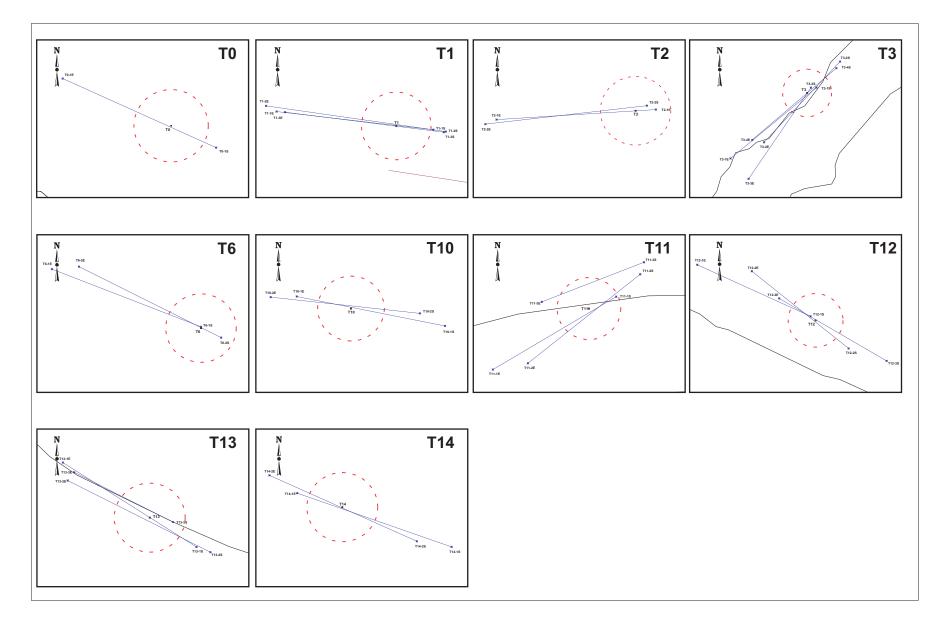


Figure C-1.Quality assurance plots of distance to station for otter trawl hauls, July 2009.
Red circle represents 100 meter distance from nominal trawl station center point. Blue lines represent trawl path while net is on the bottom.
Trawl endpoints are labeled by station name, haul number, start (S) and end (E).

Table C-29.10% trawl depth QA, July 2010.

Date	Station	Haul	Nominal Depth (m)	QA Range (m)	Data Source	Average Bottom Depth (m)	10% Y/N			
7/20/2000	то	1	18	16.2–19.8	SBE data	N/A	N/A			
7/20/2009	10	Ι	10	10.2-19.0	SOD data	18.0	Y			
7/21/2009	T1	1			SBE data	56.7	Y			
772172009	11	1			SOD data	54.5	Y			
7/21/2009	T1	2	55	49.5–60.5	SBE data	56.9	Y			
1/21/2009	11	2	55	49.5-00.5	SOD data	55.0	Y			
7/21/2009	T1	3			SBE data	57.0	Y			
1/21/2009	11	5			SOD data	55.0	Y			
7/29/2009	T2	1			SBE data	36.0	Y			
1/29/2009	12	-	35	31.5–38.5	SOD data	34.0	Y			
7/29/2009	T2	2		31.5-30.5	SBE data	35.9	Y			
1129/2009	12	2			SOD data	34.0	Y			
7/20/2009	T3	1			SBE data	N/A	N/A			
7720/2009	15	I	55		SOD data	N/A	N/A			
7/20/2009	T3	2		55 49.5–60.5	SBE data	N/A	N/A			
1/20/2009	15	2			SOD data	61.0	Ν			
7/21/2009	T3	3	55		SBE data	61.1	Ν			
1/21/2009	15	5				SOD data	62.0	Ν		
7/22/2009	T3	4			SBE data	60.0	Y			
1/22/2009	15	Ŧ			SOD data	60.0	Y			
7/20/2009	T6	1			SBE data	N/A	N/A			
1/20/2009	10	-	26	26	36	36	32.4–39.6	SOD data	35.5	Y
7/29/2009	T6	2		32.4-39.0	SBE data	38.2	Y			
1729/2009	10	2			SOD data	36.0	Y			
7/22/2009	T10	1			SBE data	131.4	Y			
1/22/2009	110	1	137	123.3–150.7	SOD data	132.5	Y			
7/29/2009	T10	2	157	123.3-130.7	SBE data	135.4	Y			
1129/2009	110	2			SOD data	135.0	Y			
7/20/2009	T11	1			SBE data	N/A	N/A			
112012009	111	1			SOD data	61.0	Y			
7/20/2009	T11	2	60	54.0-66.0	SBE data	N/A	N/A			
112012003		2	00	54.0-00.0	SOD data	60.5	Y			
7/20/2009	T11	3			SBE data	N/A	N/A			
172072003		5			SOD data	54.0	Y			

Orange County Sanitation District, California.

Table C-29 Continues.

Table C-29 Continued.

Date	Station	Haul	Nominal Depth (m)	QA Range (m)	Data Source	Average Bottom Depth (m)	10% Y/N			
7/30/2009	T12	1			SBE data	58.3	Y			
1/30/2009	112	I			SOD data	55.0	Y			
7/30/2009	T12	2	60	54.0-66.0	SBE data	58.5	Y			
7/30/2009	112	2	60	54.0-00.0	SOD data	55.0	Y			
7/30/2009	T12	3			SBE data	61.6	Y			
7730/2009	112	3			SOD data	55.5	Y			
7/21/2000	T10	1	60		SBE data	62.9	Y			
7/21/2009	T13	1			SOD data	58.5	Y			
7/21/2009	T13	2		60	60	54 0 55 0	SBE data	63.2	Y	
772172009	115	2				54.0-66.0	54.0-66.0	SOD data	60.0	Y
7/20/2000	T13	3					SBE data	58.6	Y	
7/30/2009	115	3				SOD data	57.5	Y		
7/20/2000	T 4 4	4			SBE data	137.7	Y			
7/29/2009	T14	1	107	400 0 450 5	SOD data	135.5	Y			
7/20/2000	T14	2	137	123.3 - 150.7	SBE data	138.0	Y			
7/29/2009	114	T14 2	114 2			SOD data	136.5	Y		

Notes:

Station T3 depth varies widely. 10% QA may not be applicable.

SBE = Seabird Electronics

SOD = Station occupation data

Y = Yes (Pass)

N = No (Fail)

N/A = Not applicable

Figure C-2. Quality assurance plots of trawl duration and trawl depth per haul for otter trawl stations, July 2009.

Upper and lower limit lines are \pm 10% of nominal trawl depth.

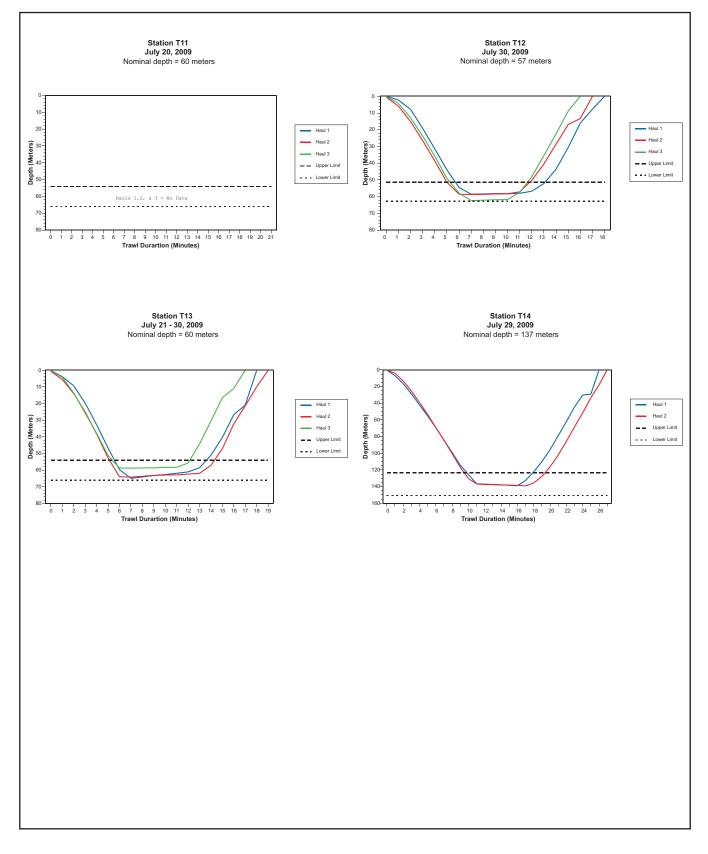


Figure C-2 Continued.

Orange County Sanitation District, California.

Table C-30. Trawl sample dates, track distances, percent difference from target track distance, elapsed time, and vessel speed, January 2010.

Date	Station	Haul	Distance Trawled (meters)	Percent Difference from Target Distance *	Elapsed Time (seconds)	Trawl speed (knots)**
January 13, 2010	T1	1	451.6	0.4	407	2.16
January 13, 2010	T1	2	448.4	-0.3	434	2.01
January 13, 2010	T1	3	450.4	0.1	430	2.04
January 13, 2010	T2	1	451.3	0.3	470	1.87
January 13, 2010	T2	2	453.2	0.7	456	1.93
January 12, 2010	Т3	1	462.4	2.8	443	2.03
January 12, 2010	Т3	2	459.7	2.2	437	2.04
January 12, 2010	Т3	3	456.6	1.5	421	2.11
January 27, 2010	T6	1	453.3	0.7	436	2.02
January 27, 2010	Т6	2	452.3	0.5	426	2.06
January 13, 2010	T10	1	455.8	1.3	456	1.94
January 25, 2010	T10	2	456.6	1.5	433	2.05
January 27, 2010	T11	1	455.1	1.1	411	2.15
January 27, 2010	T11	2	451.2	0.3	428	2.05
January 27, 2010	T11	3	458.2	1.8	446	2.00
January 12, 2010	T12	1	450.7	0.2	444	1.97
January 12, 2010	T12	2	443.0	-1.5	447	1.93
January 12, 2010	T12	3	453.3	0.7	469	1.88
January 25, 2010	T13	1	460.6	2.4	417	2.15
January 25, 2010	T13	2	454.3	1.0	424	2.08
January 27, 2010	T13	3	459.2	2.0	425	2.10
January 25, 2010	T14	1	488.7	8.6	447	2.13
January 25, 2010	T14	2	470.7	4.6	458	2.00
	Меа	an value	456.4	1.4	437.6	2.03

Orange County Sanitation District, California.

Hauls with speeds less than 1.5 knots or greater than 2 knots are denoted in bold.

* Target Distance – 450 meters

** Target Speed – 1.5 – 2.0 knots

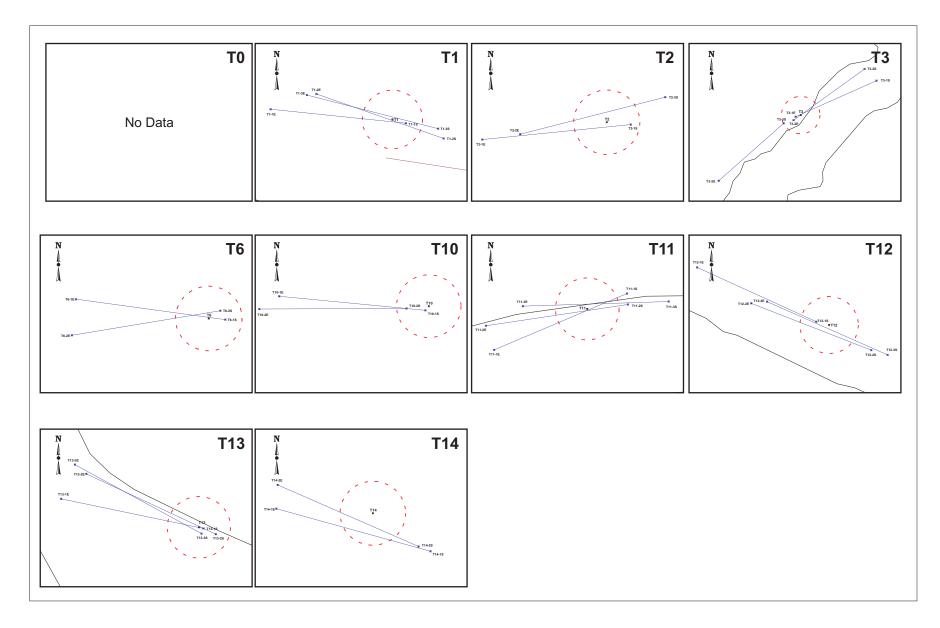


Figure C-3.Quality assurance plots of distance to station for otter trawl hauls, January 2010.
Red circle represents 100 meter distance from nominal trawl station center point. Blue lines represent trawl path while net is on the bottom.
Trawl endpoints are labeled by station name, haul number, start (S) and end (E).

Table C-31.10% trawl depth QA, January 2010.

Date	Station	Haul	Nominal Depth (m)	QA Range (m)	Data Source	Average Bottom Depth (m)	10% Y/N
1/13/2010	T1	1			SBE data	57.5	Y
1/13/2010	11	Ι			SOD data	55.5	Y
1/13/2010	T1	2	55	49.5-60.5	SBE data	57.5	Y
1/13/2010		2	- 55	49.0-00.0	SOD data	55.0	Y
1/13/2010	T1	3			SBE data	57.0	Y
1/13/2010		5			SOD data	55.0	Y
1/13/2010	T2	1			SBE data	35.4	Y
1/10/2010	12	•	35	31.5–38.5	SOD data	34.0	Y
1/13/2010	T2	2		01.0 00.0	SBE data	34.5	Y
1/10/2010	12	-			SOD data	33.5	Y
1/12/2010	T3	1			SBE data	73.1	Ν
1/12/2010	15	•			SOD data	64.5	Ν
1/12/2010	Т3	2	55	55 49.5–60.5 SBE data		67.8	Ν
1,12,2010	10	-		40.0 00.0	SOD data	60.0	Y
1/12/2010	Т3	3			SBE data	58.7	Y
1/12/2010	10	0			SOD data	55.5	Y
1/27/2010	Т6	1		36 32.4–39.6	SBE data	36.5	Y
	10	•	36		SOD data	35.5	Y
1/27/2010	T6	3	30		SBE data	36.5	Y
					SOD data	35.5	Y
1/13/2010	T10	1			SBE data	135.3	Y
			137	123.3–150.7	SOD data	140.0	Y
1/25/2010	T10	2			SBE data	141.5	Y
					SOD data	143.0	Y
1/27/2010	T11	1			SBE data	61.0	Y
		-	-		SOD data	60.5	Y
1/27/2010	T11	2	60	54.0-66.0	SBE data	64.2	Y
					SOD data	59.0	Y
1/27/2010	T11	3			SBE data	61.6	Y
					SOD data	56.5	Y
1/12/2010	T12	1			SBE data	57.8	Y
		-			SOD data	55.0	Y
1/12/2010	T12	2	60	54.0-66.0	SBE data	57.6	Y
					SOD data	55.0	Y
1/12/2010	T12	3			SBE data	57.2	Y
					SOD data	55.0	Y

Orange County Sanitation District, California.

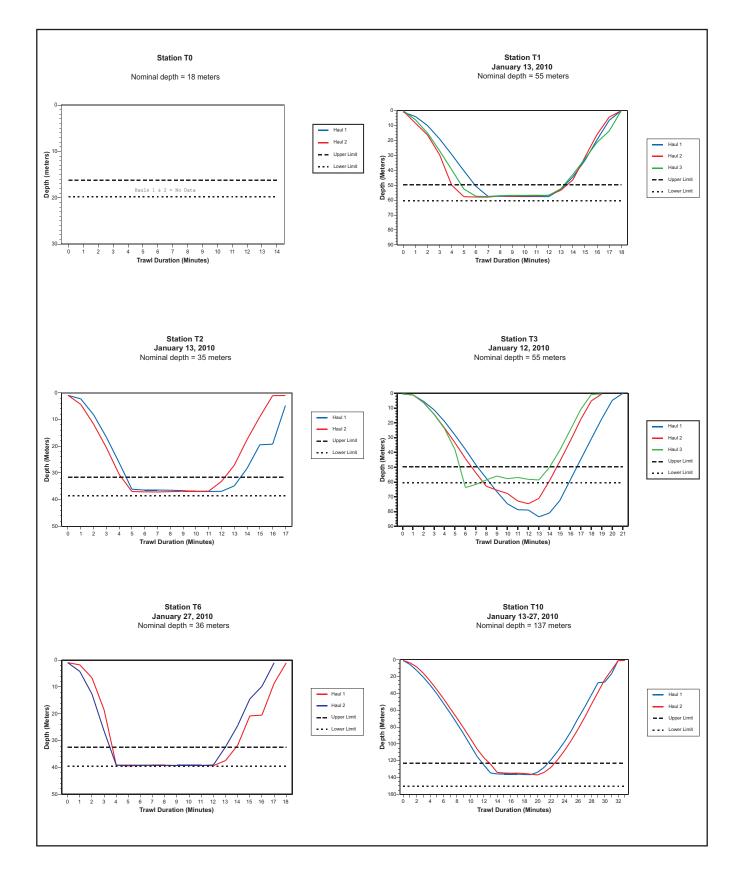
Table C-31 Continues.

Table C-31 Continued.

Date	Station	Haul	Nominal Depth (m)	QA Range (m)	Data Source	Average Bottom Depth (m)	10% Y/N
1/25/2010	T13	1			SBE data	61.8	Y
1/25/2010	115	I			SOD data	66.0	Y
1/25/2010	T13	2	<u></u>	54.0.00.0	SBE data	59.6	Y
1/25/2010		Z	60	54.0–66.0	SOD data	59.5	Y
1/27/2010		3			SBE data	63.4	Y
1/2//2010	T13	3			SOD data	65.5	Y
1/25/2010	T14	1			SBE data	143.6	Y
1/25/2010 T14	114 1	407	400 0 450 7	SOD data	140.0	Y	
4/05/0040	T14	2	137	123.3 - 150.7	SBE data	143.5	Y
1/25/2010	114	Z			SOD data	138.5	Y

Notes:

Station T3 depth varies widely. 10% QA may not be applicable.


SBE = Seabird Electronics

SOD = Station occupation data

Y = Yes (Pass)

N = No (Fail)

N/A = Not applicable

Figure C-4. Quality assurance plots of trawl duration and trawl depth per haul for otter trawl stations, January 2010.

Upper and lower limit lines are ± 10% of nominal trawl depth.

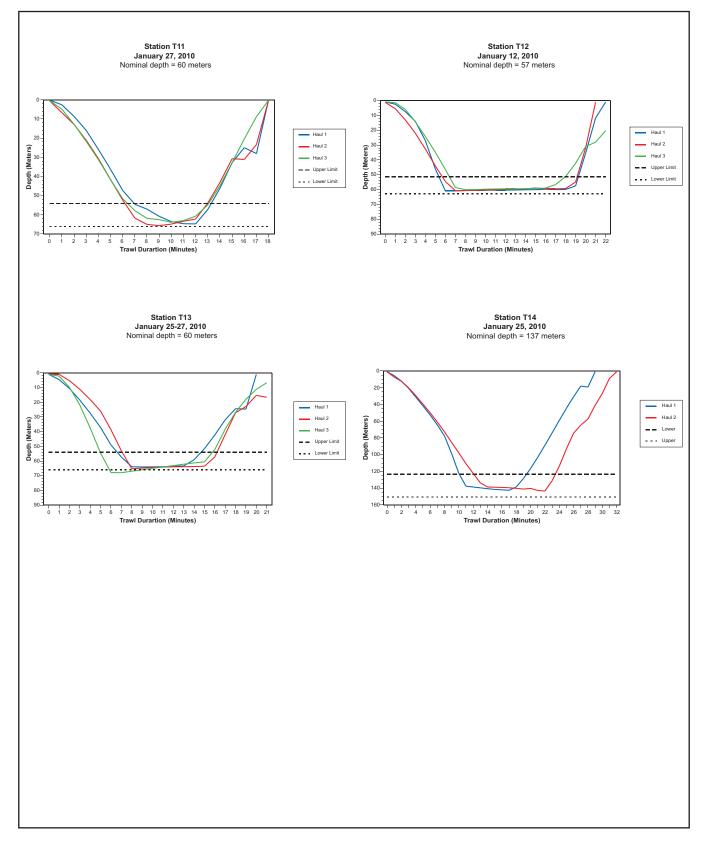


Figure C-4 Continued.

Orange County Sanitation District, California.

REFERENCES

Mearns, A.J. and M.J. Allen. 1978. The use of small otter trawls in coastal biological surveys. Rep. No. 600/3-78-083. U.S. EPA, Corvallis, OR. 34 pp.

Mearns, A.J. and H.H. Stubbs. 1974. Comparison of otter trawls used in southern California coastal surveys. TM 213. SCCWRP. El Segundo, CA. 15 pp.

OCSD. 2009. Orange County Sanitation District – Environmental Sciences Laboratory. Laboratory Operating Procedures Manual. Fountain Valley, CA.

Tetra Tech. 1986. Quality Assurance and Quality Control (QA/QC) for 301(h) monitoring programs: Guidance on Field and Laboratory Methods. EPA Contract No. 68-01-6938. TC-3953-04. Final Report. May 1986. US EPA, Washington, D.C. 267 pp, plus Appendices